CSCI1410 Fall 2021
Assignment 4: Hidden Markov Models

Code Submission 1 Due Tuesday, October 19 at 11:59pm ET
Code Submission 2 Due Thursday, October 21 at 11:59pm ET
Code Due Wednesday, October 27 at 11:59pm ET

Writeup Due Thursday, October 28 at 11:59pm ET
Late Day Deadline Saturday, October 30 at 11:59pm ET

Introduction

Silly Premise:

George just bought the new iOS Atari game pack! Problem is, he spilled some of his favorite beverage Dr.
Pepper, soaking his entire desk along with all his papers and his smartphone. He wants to play the game,
but his phone’s touchscreen has started acting wonky. You will be helping George filter his touchscreen data
using Hidden Markov Models (HMMs) so he can control the little Atari dude with his finger.

Hidden Markov Models:

In this assignment, we will be taking a deeper look at HMMs to better understand their functionality and
uses. In the first part, you will implement a generic HMM. In the second part you will use a HMM to filter
noisy touchscreen data, and in the last part you will write about what you did in the second part.

1 Part 1: Generic HMM

In this part of the assignment, you will implement a basic HMM that supports filtering and prediction. Your
HMM will take in a series of observations at sequential timesteps (i.e. discrete points in time: 0, 1, 2,
...), and compute a probability distribution over hidden states for the current timestep (filtering) and future
timesteps (prediction).

1.1 Coding

You will write your code for this part in hmm.py, which contains the HMM class. The HMM class is instantiated
with a function specifying the sensor model, a function specifying the transition model, and a preset number
of hidden states.

You will implement the following functions:

1. tell(observation) :
Takes in an observation, records it, and processes it in any way you find convenient. You will need to

keep track of the current timestep and increment it each time your HMM is “told” a new observation
(i.e. each time this function is called).

2. ask(time):
Takes in a timestep that is greater than or equal to the current timestep and outputs the probability
distribution over states at that timestep, informed by the observations so far. The probabilities should
be represented as a list in which the ith element is the probability of state 3.

ask(0) should return a uniform distribution, and the first observation that the HMM is told
occurs at time 1.

Here is an example of calling ask from a HMM with 3 hidden states:

[in:] ask(4)
[out:] [0.4, 0.2, 0.4]

The way to interpret this is that at time 4 (i.e. after the fourth observation), the hidden state is 0
with probability 0.4, 1 with probability 0.2, and 2 with probability 0.4.

Do not modify the input and output specifications of ask and tell.

To be clear, because tell does not output anything, you will not be graded on what it does in isolation.
You will be graded based only upon how tell and ask work together.

1.2 Representations

e States are represented as 0-indexed natural numbers 0,1,..., N — 1, where N is the number of hidden
states in the HMM.

e Observations are represented as upper-case letters ‘A’, ‘B’, ..., ‘Z’. For simplicity of representa-
tion, you may assume that there are no more than 26 possible observations.

e Timesteps are represented as 0-indexed natural numbers 0,1,

1.3 Assumptions

In all that follows, S; is the random variable that gives the hidden state at time ¢, and o, is the observation
at time ¢. For this part of the assignment, you may make the following assumptions:

1. The tth observation given to your HMM occurs at timestep ¢. In other words, observations are never
skipped, and they are always told in order. You may assume this in Part 2 as well.

2. Markov Assumption. The future is independent of the past, given the present.

Pr(Si1 | St Si-1,...,51) = Pr(Siq1 | St)

3. The present observation is independent of past observations, given the present state.

Pr(ot | St,0t-1,0t—2,...,01) = Pr(os | St)

You can use assumptions 2 and 3 to obtain the following equation, the derivation of which you can find in
section 15.2.1 of the textbook. Note that « is the normalization factor for the probability distribution.

Pr(Siy1 | 01,2,...,t+1) = Pr(ogy1 | Siq1) ZPT(SH-l | St = s¢) - Pr(S; = s¢ | 01,09,...,0) (1)

St

You will find this equation extremely helpful in completing at least Part 1 of this assignment. You should
stare at it for a while to figure out what it means. If, after enough staring, you need help understanding the
equation, you should come to TA hours. You should take a stab at understanding the equation’s derivation
as well; doing so may be helpful in Part 2.

1.4 Testing Part 1

You can run python unit_tests.py to test your program on a few basic 1O tests. There are also tests for
part 2 within this file, so don’t worry about failing those for now. You should write your own additional test
cases to make sure that your generic HMM is behaving as expected. You won’t be graded on your tests, but
testing is critical to evaluate the correctness of your code. To test your HMM, you will need a transition
model and an observation model.

For this reason, we give you some sample models in hmm_runner.py. This file contains functions with sample
data within them:

1. sensor_model (observation, state):
Returns the probability of observation being emitted when we are in state.

2. transition_model(old_state, new_state):
Returns the probability of transitioning from old_state to new_state.

To run your HMM, you can run the file by executing python hmm runner.py and entering in observations
as you see fit. It will return the estimated distribution of the current time point. Note that you will have to
begin your HMM implementation before it will return useful information.

There are two implemented models for you to test on: suppliedModel and simpleModel. Each contain a
relevant sensor and transition model. By default, the suppliedModel is used in hmm runner.py when you
enter observations, but it can be easily changed to use simpleModel by running

python hmm runner.py --simple.

simpleModel only accepts the three observations ‘A’; ‘B’ and ‘C’ and as a result is much easier to hand
simulate. simpleModel is notable since the number of states and observations are explicit, and the number
of states and observations are different.

In order for you to quickly verify whether your solution is correct, we have also included a compiled binary
that runs the TA soution called ta_hmm runner.bin. Unfortunately, this compiled binary currently only
works on the department machines. You can run this binary with the same flags as for hmm_runner. py to
make sure that your HMM and the solution return the same values (values within 0.001 of the TA solution
are sufficient for the autograder). Here is an example that runs the TA solution on the simpleModel (make
sure to activate the course virtual environment first!):

./ta_hmm_runner.bin --simple

2 Part 2: Finger Tracking

2.1 The Problem

Now you get to apply the skills you learned implementing the generic HMM to help George filter his noisy
touchscreen data. You will do this by filling in the stencil code for touchscrenHMM class in touchscreen.py.

Your goal is to write filter_noisy_data, which takes in the touchscreen’s noisy reading of the location of
George’s finger and outputs a probability distribution over the true location of George’s finger, considering
the current noisy readings as well as all past noisy readings. To compare this to Part 1, filter noisy_data
should behave exactly as if you were to call tell(), passing in the current noisy reading, and then ask(),

passing in the current timestep. This is the function that will be directly evaluated by the grader to determine
your score in Part 2.

Note that you cannot use the compiled HMM TA solution in your handin, but you can use your implemen-
tation from part 1 if you would like.

You should write touchscreenHMM by formulating this situation as a HMM. This means that you should
come up with both a sensor model and a transition model that can be used in conjunction with one another
to filter the noisy finger data. We have provided you with stencils for sensor_model and transition model
to get you started. Since we are not grading them, you may change them in any way you like.

We will be calling the function filter noisy_data() from an instance of your touchscreenHMM. When
implemented, this function will take in a noisy frame (a NumPy array) and return the distribution of where
the actual finger position is as another NumPy array. This is very similar to the tell() function you
implemented in part 1, but in two dimensions. For example, filter noisy_data(frame) could return:

00 0 O
00 .1 2
00 .1 5
00 0 1
When frame is the 2D NumPy array:
0 0 0O
0 0 0 O
0 0 01
0 0 0O

You need to get the noisy frame by calling get_frame() on an instance of touchscreenSimulator. Every
time get_frame () is called, the subsequent frame is returned. By calling get_frame (actual _position=True),
you are able to also get the actual position of the finger for testing. It will return a tuple of (noisy_frame,
actual_frame).

This problem differs from a generic HMM because the finger moves in a way that depends on more than
just the previous observation (the finger has directional velocity and some other interesting behaviors).
Remember to take this into account in your solution! However, it is suggested to implement a regular HMM
first before trying to take additional time points into account. Check out the ”Hints and Observations” in
section 2.4 for more on this.

It can be a bit strange to think of a distribution as a 2D array, and can be difficult transitioning between
them. NumPy luckily has a library that makes it easy to convert things into 2D arrays:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.reshape.html

2.2 Simulator

e Simulator
The simulator simulates both the movement of George’s finger and the noisy readings of the touch-
screen. The simulator returns a sequence of frames it has created, often producing the true position
of the finger, but erring occasionally. A frame is represented as a NumPy array. Note that the actual
position can only move to an adjacent square, and is more likely to continue in the same direction than
change direction.

For example, a simulation for a 4x4 board over 3 frames could look like this with the matrices repre-

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.reshape.html

senting NumPy arrays:

0 0 0O 0 0 0O 0 0 0O
0 1 0 0 0 010 0 0 0O
000 0> j0 0 0O (0010
0 0 0 O 0 0 0 O 0 0 0O

For testing, the actual path of the finger is also provided. See the relevant source code section for more
information on how to use the simulator.

e Simulator Visualizer
A visualizer for the simulator for debugging and testing. Note that depending on the parameters the
visualizer function is given, the visualizer will either display the actual position of the finger, the noisy
data, or both simultaneously. See the relevant source code section for more information on how to use
the visualizer.

e Simulation Testing Manager
The simulation testing manager contains a few handy features to debug and test your solution. You’ll
be able to save simulations to test against the same data multiple times. The testing manager also
builds upon the simulation visualizer to show your solution’s probability distribution side-by-side with
the simulation. See the next section (2.3) for more information on how to use the testing manager.

2.3 Relevant Source Code

Please note that in order to keep the scenario “realistic” we have compiled the algorithm that adds noise
and the simulator so you can’t see the source code. Unfortunately this means that Part 2 will only run on
department machines at the moment.

e simulator.so This file contains the finger simulator algorithm as a compiled module. It uses a top
secret algorithm to add noise to the actual position of the finger, so you will have to use the visualizer
and/or analyze simulations to understand it better. It contains class touchscreenSimulator. You
can make function calls to this file as if it were a .py file.

To create an instance of a touchscreen simulator, you can use:
touchscreenSimulator (width=20, height=20, frames=100)

Where width and height are the dimensions of the touchscreen, and frames is the number of frames
in the simulation. The default is a 20 x 20 touchscreen over 100 frames, which is what all grading
scripts will be run on.

After creating an instance of the simulator, make sure to call sim.run_simulation() before anything
else. This will generate the data (the noisy and actual frames) within the simulation instance. Since
we are trying to simulate an online algorithm where you only get data frame by frame, you can get
the next frame by calling get_frame() on an instance of touchscreenSimulator. This will return a
NumPy array representing a screen for the current timepoint. This function also auto increments time,
so every time you call the function, the next timepoint will be returned.

You can use the visualizer on a simulation sim by calling
sim.visualize _simulation(noisy=True, actual=True, frame length=0.1)

By changing the values of noisy and actual, you can plot the noisy data, actual position, or both. If
you plot both, orange represents the actual position, yellow represents the noisy position, and purple
represents when the two are in the same place. The actual screens are represented as 2D NumPy arrays
filled with Os besides the touch location which is represented as a 1. Tip: check out numpy.nonzero().

e touchscreen_runner.py: This file contains the driver script that you will use for most of your testing

2.4

and debugging. Although the script offers several flags for configuration, you can leave most fields as
their default values, since these are the parameters you will be graded on. To get a quick summary of
the flags that the touchscreen runner supports, run

python touchscreen_runner.py --help

The important flags to know are:

--width: The width of the touchscreen (optional, defaults to 20)
--height: The height of the touchscreen (optional, defaults to 20)
--frames: The number of frames to simulate (optional, defaults to 100)

--visualize: Shows a visualization of touchscreen simulation. This can be useful if you want to run
a ton of simulations just to observe their behavior. When used with --evaluate,
also visualizes the probability distributions returned by your touchscreenHMM at
each timestep.

--evaluate: Scores the student’s HMM on the given simulation. See for more info
about these scores and how they will translate into your grade.

The touchscreen runner.py file also supports flags --save_file, for saving simulations to a text
file format, and --load_file, for loading those saved simulations. The reproducibility offered by the
ability to load saved simulations can be useful for testing and debugging.

The text files created by the touchscreen runner will be saved in this format (see simple_sim.txt):

20 20 100
8 12 8 12
18 6 9 11
18 6 10 10

The first line contains three integers, representing the width, height, and number of frames of the
simulation. In the example above, the simulation is size 20 x 20 and is 100 frames in length. Each
subsequent line (representing one frame) contains four integers: noisy_x, noisy._y, actual _x, actual_y.
In the second line: 8 12 8 12 denotes a noisy location of (8,12) and an actual location of (8,12) for
that timepoint.

visualizer.py Contains the visualizer for this project. It uses matplotlib to plot the numpy arrays
and automatically progresses through the frames. You won’t ever have to call this function directly.

constants.py This file contains the constants for the noisy simulation. We will be testing your
touchscreen with the given constants, but feel free to experiment to see what changing them does!

generate_data.py You may find it useful to generate statistics or do some calculations compar-
ing the noisy data to the actual finger location (hint hint). To make things easier, the function
create_simulations(size, frames) will create a list of all frames in a random simulation for you.
The create_simulations function is imported for you at the bottom of touchscreen.py, which you
can run with the command python touchscreen.py.

Observations and Hints

To simplify the problem for you, we have guaranteed that the actual and noisy positions are the same
for the first frame of a simulation. Use this knowledge to your advantage.

In a single timestep, George’s finger will always either stay in the same place or move to one of the 8
adjacent locations (including diagonally adjacent locations).

George’s finger is more likely to continue moving in the same direction as it moved in the last timestep
than it is to move in any other direction. Otherwise, his finger moves in a uniformly random direction.

If George’s finger is about to move off the edge of the touchscreen, he will pause for one timestep,
and then be more likely to move in the opposite direction at the next timestep, just as if he had been
moving in the opposite direction before.

Run the visualizer on a few simulations. Look for patterns in the errors that the touchscreen makes.
How would you describe these errors? How would you model this in your HMM?

A state does not necessarily have to be a cell. For example, you can trade off runtime for accuracy by
grouping together adjacent cells as one state. Concretely, one state could be that the finger is in one
of the four cells in the top-left corner. There are conceivably other useful state representations as well.

It will be difficult for you to get a sense for how well you are doing based on your score if there is not
anything to compare it to. We recommend trying a few different solutions and comparing their scores
(see Section for scoring details). You will benefit from doing this both because it will probably
lead to a better solution and because it will be useful when writing about your other approaches (see
Section 3).

You may want to take a look at question 5 in the writeup. This may give you some ideas on how to
implement your touchscreenHMM.

2.5 Testing Part 2

You can run unit_tests.py for your solution in part 2, as well as write your own additional tests. In
addition, we provide the below testing functionality:

We are providing you with the testing functions that we will be using to grade your filter noisy_data
implementation. These functions are contained in simulation_evaluator.py, which has code for a class
called touchscreenEvaluator. A touchscreenEvaluator has two methods:

3

e calc_score(actual_frame, estimated_frame): This function calculates the individual score for a

estimated_frame, which is a distribution of possible locations for the true position of a finger (returned
by your touchscreenHMM’s filter noisy_data function). This works by awarding more points for
higher distributions near the actual position of the finger by using a normal distribution.

evaluate_touchscreen_hmm(touchscreenHMM, simulation): This function takes in an instance of
your touchscreenHMM and outputs a map with 6 key-value pairs. The first value is an accuracy
score for your touchscreenHMM, a weighted result of running calc_score() over all the frames in a
given simulation. The second value is an accuracy score for if you just returned the noisy frame in
filter noisy_data. The fourth value is a number that we will be using to evaluate the consistency
of your solution, and the fifth value is the same metric for if you just returned the noisy frame in
filter noisy_data. The rubric_ scores are given as estimates of what your actual autograded score
would be for that single run (we will be averaging over multiple runs).

Part 3: Writeup

3.1 HMM Questions

Now that you have implemented your HMM, and George has successfully ordered his shipment, you will
write about your approach to completing part 2. In your writeup, you should answer the following questions
in separately numbered sections:

1. How did you model this situation as a HMM? What did you choose as the hidden states, observations,
transition models, and sensor models? Be sure to describe these clearly and completely. This may
easily take more than a page.

2. How did you select the transition and sensor models that you ended up using? How did observations
from the simulator influence your choices? Account for each choice that you made.

3. What assumptions do you make in your approach? In particular, does your HMM relax either as-
sumption 2 or 3 (or both) in section 1.37 For each of your assumptions, indicate whether they hold in
reality.

4. What other approaches did you consider? Why did they seem promising? Why didn’t you end up
using them?

5. Smoothing and Prediction Inference Tasks

(a) Explain (with examples, equations, etc.) what is smoothing in the context of HMMs. How would
you modify your existing filtering code to implement smoothing over the touchscreen data? What
should we expect as reasonable arguments and outputs for a function called touchscreen_smoothing?

(b) Explain (with examples, equations, etc.) what is prediction in the context of HMMs. How
would you modify your existing filtering code to implement making predictions over the touch-
screen data? What should we expect as reasonable arguments and outputs for a function called
touchscreen prediction?

3.2 SRC Questions

Hidden Markov Models are used in a wide range of applications such as finance, bioinformatics, and speech
recognition. As these applications see increasing use in industry, many people whose jobs revolved around
the same applications may lose their jobs. Read the following article
https://time.com/5876604/machines-jobs-coronavirus/ on the impact of Al replacing human workers
during the pandemic. Please answer the following question:

e Imagine if there was an artificial intelligence algorithm created to make laws. Would you be comfortable
replacing human law makers with that algorithm? What about the algorithms replacing truck drivers
or McDonald’s cashiers. Where do we draw the line for which jobs should we allow to be replaced or
should we uphold that all jobs should be protected from being automated away?

Then pick ONE of the following three questions

1. Pick one of the job fields (ex: finance) discussed in the article which have been impacted by the
increased application of AI. Did the displacement of jobs in that field surprise you? Do you think it
was inevitable for these jobs to be ”automated away”?

2. The latter half of the article focuses on retraining workers as a solution to the unemployment issue, do
you think this is a viable approach?

3. Which party do you think is responsible for accounting for the displacement of jobs from AI? The
developers of the AI? The government? The employer? Or another party?

4 Grading

We will give you your score based on the rubric in rubric.txt. You can take a look at this file to get a
sense of the point allocations.

https://time.com/5876604/machines-jobs-coronavirus/

4.1 Part 1

For the basic HMM, we will be testing the functionality by adding test data to the HMM using tell() and
comparing the results of ask() to the actual distribution. This portion will be auto graded with a certain
window of error forgiveness (0.001). The run time for tel1() and ask() should be less than 5 seconds. See
the corresponding [Section 1.4: Testing Part 1|section for more info.

4.2 Part 2

For the touchscreen problem, your score will not be an all or nothing field like past auto-graded sections, but
rather a sliding scale based on the performance of the HMM. Initializing an instance of your touchscreenHMM
should take less than 1 minute, and each call to filter noisy_data on a 20 by 20 touchscreen should take
at most 10 seconds per frame. Our tests will consist of multiple simulations (size: 20 x 20) of 100 frames.
We will be grading your implementation on two main factors:

e accuracy: we look at each frame returned from your filter noisy_data call, and score you based on
how tightly your distribution captures the actual finger location over all frames.

e consistency: we reward distributions that don’t deviate as often from the actual finger location. For
example, a solution that simply returns the noisy frame would not receive a good consistency score
because its distribution often misses the actual location completely.

The evaluator we provide you returns a map with six key-value pairs: accuracy_score, noisy_score,
missed_frames, noisy_frames, and two rubric estimates rubric_1 and rubric_2. The accuracy_score will
be a float between 0 and 100, where a higher score corresponds to better accuracy for this portion. You
will be receiving some points as long as you are scoring higher than the noisy_score. For the consistency
score, a lower number of missed_frames will result in a higher score. You should definitely obtain a lower
number than noisy_frames.

Note: Because of the nature of the assignment and how our scoring system works, we expect perfect scores
to be exceptionally rare. While we as TAs can give you ideas or guide you in the right direction, it may be
worth noting that even our own solutions are not optimal! We know this assignment is difficult and want
to see what you can do, which is why we are giving you almost 3 weeks to complete it. Don’t worry too
much about how high your scores should be, and just try to get the best scores that you can. If you’ve spent
longer than 18 hours of genuine work on part 2, move on to the writeup and write about what you’ve tried.

5 Virtual Environment and Requirements

As usual, you should be using our virtual environment to run your code:
e To activate: $ source /course/cs1410/venv/bin/activate
e Then simply run your files as: $ python <executable.py>
e To deactivate: $ deactivate

Alternatively, if you choose to work on your own machine, there are some additional packages that are
needed for this project, namely scipy, matplotlib, and numpy. These are already installed in our virtual
environment, but you will need to install them on your own machine.

One quick way to install the dependencies you don’t have is to use pip. If you don’t have pip installed on
your machine, you can find instructions here: https://pip.pypa.io/en/stable/installing/

https://pip.pypa.io/en/stable/installing/

6 Install and Handin Instructions
To install, accept the GitHub Classroom assignment at [this linkl This will create a private GitHub repository
with the stencil code for you to work on the assignment.
To handin,
1. Make sure to push any changes you want to test to your private repository. You can do this by running

git add .
git commit -m "<a commit message describing what you changed>"
git push

2. On Gradescope, click on the assignment you are submitting for.
3. Under “Submission Method”, please select GitHub.

4. Under “Repository”, you can search for your repository by typing “csci-1410” and selecting the repos-
itory for this assignment.

5. Under “Branch”, you can select any branch that you want to be graded. So if you're testing something
on a branch, you can see how its functionality performs here, before merging it to master. Feel free to
upload your assignment as many times as you like before the deadline.

In accordance with the course |grading policy, your written homework should not have any identifiable
information on it, including your banner ID, name, or CS login.

10

https://classroom.github.com/a/P7cmgUDq
https://cs1410-website.vercel.app/files/Collaboration_Policy.pdf

	Part 1: Generic HMM
	Coding
	Representations
	Assumptions
	Testing Part 1

	Part 2: Finger Tracking
	The Problem
	Simulator
	Relevant Source Code
	Observations and Hints
	Testing Part 2

	Part 3: Writeup
	HMM Questions
	SRC Questions

	Grading
	Part 1
	Part 2

	Virtual Environment and Requirements
	Install and Handin Instructions

