
CSCI1410 Fall 2021

Assignment 3: Knowledge Representation and

Reasoning

Code Submission 1 Due Thursday, October 7 at 11:59pm ET

Code Submission 2 Due Saturday, October 9 at 11:59pm ET

Code Due Tuesday, October 12 at 11:59pm ET

Writeup Due Wednesday, October 13 at 11:59pm ET

Late Day Deadline Friday, October 15 at 11:59pm ET

1 Introduction

In this assignment, we will represent the rules of courses and prerequisites in a
knowledge base, implemented in Prolog.

2 Prolog

Prolog is a programming language that has its roots in first order logic. In this
assignment, we will be using SWI-Prolog. Below, you’ll find all the infor-
mation you need to complete the assignment. Feel free to come back to
this section after you’ve finished reading section 3!

2.1 Loading a Knowledge Base

To use Prolog, open up the terminal in a department machine and navigate to
the directory where your knowledge base curriculum.pl is located. Type:

$ swipl

This should open up a prompt. Now, you can load your knowledge base as
follows:

1



?- [curriculum].

Or, if you’re using Windows, type:

?- make.

You should re-compile the knowledge base every time you make a change.

In order to exit SWI-Prolog, you can do the following:

?- halt.

2.2 Variables

In Prolog, variables start with an uppercase letter and constants with a low-
ercase letter. For example, in singing(mark), mark is a constant while in
singing(X), X is a variable. We can use is to assign a value to a variable. For
example,

isTwo(X):-

X is 2.

2.3 Facts and Rules Syntax

Every fact, rule and query ends with a dot. We have provided you with a sample
knowledge base, example.pl. You can play around with it and pass it some
queries. The sample knowledge base is as follows:

singing(elon).

playingGuitar(mark).

playingGuitar(satya).

singing(jeff).

playingGuitar(elon):-

happy(elon).

happy(mark):-

singing(mark),

playingGuitar(mark).

happy(satya):-

singing(satya);

playingGuitar(satya).

2



sad(satya):-

not(playingGuitar(satya)).

grumpy(jeff):-

singing(jeff)->

false

;

true.

2.3.1 If

In the above KB, the first four lines are facts and the rest are rules. Consider
the rule on the fifth line:

playingGuitar(elon):- happy(elon).

The above line can be read as elon plays the guitar if elon is happy. The :-

operator is used to denote ”if” or ”is implied by”.

2.3.2 And

Consider the next rule:

happy(mark):-

singing(mark),

playingGuitar(mark).

The above can be read as mark is happy if mark is singing and playing the
guitar. Thus, the , in Prolog is used to denote “and”.

2.3.3 Or

Consider the next rule:

happy(satya):-

singing(satya);

playingGuitar(satya).

The above can be read as satya is happy if satya is singing or playing the
guitar. Thus, the ; in Prolog is used to denote “or”.

2.3.4 Not

Consider the next rule:

3



sad(satya):-

not(playingGuitar(satya)).

The above can be read as satya is sad if satya is not playing the Guitar. Thus,
not(...) is used to denote negation.

2.3.5 If-then-else

Consider the last rule:
grumpy(jeff):-

singing(jeff)->

false

;

true.

This can be read as, jeff is grumpy unless he’s singing. The expression before
the -> is the expression that is checked for truth; if it’s true, the next line is
executed. If it’s false, the line after the ; is executed.

2.4 Operators

Since Prolog is built on true and false statements, you might find Boolean
expressions useful! Prolog supports comparison operators, as illustrated in the
table below:

Syntax Explanation
<Term1> @> <Term2> True if Term1 is after Term2 in the standard

order of terms.
<Term1> @< <Term2> True if Term1 is before Term2 in the standard

order of terms.
<Term1> @=> <Term2> True if Term1 is after Term2 in the standard

order of terms, or both terms are equal.
<Term1> @=< <Term2> True if Term1 is before Term2 in the standard

order of terms, or both terms are equal.
<Term1> == <Term2> True if both terms are equal.
<Term1> \== <Term2> True if terms are not equal.

2.5 Commenting

To add comments in Prolog, you can use /* */ or %.

2.6 Querying the Knowledge Base

Once you’ve loaded the knowledge base, you can query it. Assume that the
knowledge base contains two facts:

4



singing(elon).

singing(jeff).

Now, we can ask the knowledge base if a fact is true or false, as follows:

?- singing(elon).

?- true.

In this example, we’ve asked the knowledge base if a fact we’ve given it is true.
We can also query for information that the knowledge base contains, as follows:

?- singing(X).

Prolog then returns:
?- X = elon

You’ll notice that it’s only returned one answer, while we know that there are
more! To continue, simply type ; after the first answer rather than pressing
enter. Prolog will then return:

?- X = jeff

If you have any further questions about syntax, you can post on Piazza or come
to TA hours!

Note: Every fact, rule and query in SWI-Prolog must end with a dot. If you
forget the dot, you will run into errors!

3 Your Task

3.1 Knowledge Base

A knowledge base contains facts and rules. Your first task is to create a knowl-
edge base describing courses and their prerequisites. The following is a graph of
courses and prerequisites in the Computer Science department. Note that the
graph does not strictly follow the Brown CS curriculum, meaning the rules of
the graph are not necessarily the same as the Brown CS department’s rules.

5



Figure 1: In the graph, a solid arrow from A to B means that A is a prerequisite
of B. Dotted arrows mean that ONE of these courses is a prerequisite of the
course. For example, CS15 is a prerequisite of CS16. However, to take CS141,
you have to take CS22 and either CS16 or CS18. Similarly, to take CS32, you
have to take either CS16 or CS18.

You also have the following rules about courses:

1. CS15, CS17, CS33, CS141 and CS126 are only offered in the fall.

2. CS16, CS18, CS22, CS32, CS166 are only offered in the spring.

3. A course is intro if it’s offered in the fall and has no prerequisites, or if it’s
offered in the spring and has a prerequisite that has no prerequisites.

4. A course is intermediate if it is not an intro, but its prereqs are all intro
classes.

5. A course is upper level if its prereqs are an intro and CS22, or if its prereqs
are not intros.

6. Courses may only be of one level; i.e. intro courses may not also be
intermediate courses, etc.

7. Course(s) can be neither a lower level nor an upper level course.

Please do not hard code these rules for each course. We will be adding
new courses while testing and your knowledge base rules should work on them.

6



Adding facts don’t count as hard coding because facts need to reference specific
information to be a fact rather than a rule. Hardcoding would be something
like: intro(Course) :- Course == cs01;; Course == cs00 . (where the require-
ments to be intros haven’t been taken into account at all).

While constructing your knowledge base, you must use the following predi-
cates. We have specified which predicates you must write rules for, and which
you must use as facts. You cannot use findall or forall.

fall(Course)

Use: Fact
English version: True when Course is offered in the fall.

spring(Course)

Use: Fact
English version: True when Course is offered in the spring.

has_prereqs(Course, Prerequisite)

Use: Fact
English version: True when Prerequisite must be taken to be eligible to take
Course, or if Prerequisite is one of multiple courses that can be taken to gain
eligibility to take Course.

no_prereqs(Course)

Use: Fact
English version: True when Course can be taken without taking any other
courses previously.

intro(Course)

Use: Rule
English version: True when Course is offered in the fall and has no prerequi-
sites, or if it’s offered in the spring and its prerequisite has no prerequisites.

intermediate(Course)

Use: Rule
English version: True when Course is not an intro, but its prereqs are intros.

upper_level(Course)

Use: Rule
English version: True if the prereqs of Course are not intros, or if its prereqs
are CS22 and intros.

The courses are represented as cs15, cs16, cs17, cs18, cs22, cs32, cs33, cs141,
cs166 and cs126. You can use any additional predicates, but you must use the
ones specified above. We will be using these for testing purposes. You are given
a stencil file curriculum.pl to fill in with the above rules and predicates.

7



3.2 Queries

Now that you’ve implemented the basic knowledge base, Mark has a specific set
of questions that he wants the knowledge base to answer. In plain words, we
have given you the queries that we will be testing you on. Your task is to add
the appropriate facts to curriculum.pl so that your knowledge base answers
each query correctly. Although we won’t be testing you on this explic-
itly, you should also figure out how to express each query in Prolog
so that you can test your implementations.

The first thing you should do is add one more rule to your knowledge base:

can_take(Student, Course)

Use: Rule
English version: True when Student is eligible to take Course (i.e. they have
taken the necessary prerequisites.)

You must implement the can_take function to check a student’s eligibility to
take classes. We will be running our autograder using your version of can_take,
so make sure it’s correct! You can hardcode cs141 and cs126 in this function.
You will use the following fact to write your can_take rule:

has_taken(Student, Course)

Use: Fact
English version: True when Student has taken Course.

You now should now translate the following statements into Prolog by adding
facts to your knowledge base using the has_taken predicate. Please use the
indicated name in this font for each of the scenarios, or else our autograder
won’t work!

1. mark has only taken one intermediate class, and the prereqs for this inter-
mediate class, and those are the only classes he has taken. By taking this
intermediate class, —mark— has not made himself more eligible than he
was previously to take more classes, because taking the intermediate class
and its prerequisites didn’t fulfill any combination of prerequisites.

2. elon can take cs32 and cs18. You should assume he cannot repeat classes.

3. sheryl Sandberg is eligible to take all upper level classes.

4. The only class jeff Bezos can take that he hasn’t already taken is CS32.

3.3 Prolog Output Clarifications

1. When making a query, it is okay if courses show up multiple times.

8



2. If a query returns true (as desired), but you continue it with a semicolon,
it may return false. This is because Prolog returns false when the query
cannot search for more possible solutions. As long as there is one true,
this is okay.

4 Writeup

4.1 Written Questions

Answer these in a numbered, typed document.

1. Given that the following statements are true, derive the truth value of A
and show your work.

¬D ∧ E
C ∨D
B =⇒ ¬C
A ∨B

2. “If it rains and you don’t open your umbrella, you will get wet”. Translate
this statement to propositional logic and write its truth table.

3. Write the following statements in first order logic. You are given the
functions: AuthorOf(A, B), IsBook(A), and Equals(A, B).

(a) All books have an author.

(b) Sheryl Sandberg wrote the book Lean In.

(c) At least one book has exactly three authors.

(d) No books were written by Mark.

4. Discuss the differences between Propositional Logic and First Order Logic.

4.2 SRC Questions

If you have a Facebook account, view the activity Facebook tracks by going to
here.
You can also view all information Facebook collects by following this guide (from
Facebook)
Alternatively, if you have never made a Facebook account (or have seen that
information before), read the following article of the design process and history
of Facebook’s ”people you may know” feature.

1. Did you know about this feature to view the information Facebook col-
lects? It is part of Facebook’s statement for privacy and transparency,
however is it enough to just have this feature? Or does Facebook have
an obligation to not only give an ability to view information, but also
advertise that ability.

9

https://www.facebook.com/off_facebook_activity
https://www.facebook.com/help/212802592074644?ref=ayifaq
https://marker.medium.com/the-untold-history-of-facebooks-most-controversial-growth-tool-2ea3bfeaaa66


2. How might design decisions regarding how to represent the relevant data
have real world impact? Let’s say a Facebook engineer is tasked with
designing a knowledge base for a friends network, how might a decision to
include a certain rule have unexpected ramifications?

5 Grading

For part 3.1, we will be testing your KB by adding our own courses and ensuring
that your rules return what we expect. This is why you cannot hardcode the
rules we tell you to implement - i.e. you cannot say the Prolog version of, “A
course is an intro if it is courseA or courseB or courseC” because when we add
courseD to your KB, it should also tell us it’s an intro.

In other words, you only need to make your KB work for the scenarios we
have illustrated in the graph. For example, to test that you haven’t hardcoded
things, we might create a new intro sequence that is functionally the same thing
as an intro pair that’s in the graph, and ensure that your KB tells us those new
courses are intros. But we aren’t going to test some edge case that isn’t logically
represented by the graph and rules we gave you.

Queries will be tested on individual courses; you don’t need to worry about
issues related to variable queries (e.g., can_take(person, X)).

For part 3.2, the purpose is to think about what the Prolog query will be trans-
lated from English, and then add the appropriate facts to your KB. Note that
this means we are not formally testing your can take rule. We expect your
can take rule to be functional enough so that our queries work with it. You
should not interpret this as a license to hard code the answers to the queries
in your can take function, as it probably won’t work. But also, if you feel that
there’s no other way to represent a scenario by thinking extensibly and sticking
to what’s in the handout, then you may want to consider what the special cases
are and adjust your can take function as necessary.

You can check rubric.txt in your stencil folder for more details about grading.

6 Install and Handin Instructions

To install, accept the GitHub Classroom assignment at this link. This will
create a private GitHub repository with the stencil code for you to work on the
assignment.
To handin,

1. Make sure to push any changes you want to test to your private repository.
You can do this by running

10

https://classroom.github.com/a/5-9a-vYF


git add .

git commit -m "<a commit message describing what you changed>"

git push

2. On Gradescope, click on the assignment you are submitting for.

3. Under “Submission Method”, please select GitHub.

4. Under “Repository”, you can search for your repository by typing “csci-
1410” and selecting the repository for this assignment.

5. Under “Branch”, you can select any branch that you want to be graded. So
if you’re testing something on a branch, you can see how its functionality
performs here, before merging it to master. Feel free to upload your
assignment as many times as you like before the deadline.

In accordance with the course grading policy, your written homework should
not have any identifiable information on it, including your banner ID, name, or
CS login.

11

https://cs1410-website.vercel.app/files/Collaboration_Policy.pdf

	Introduction
	Prolog
	Loading a Knowledge Base
	Variables
	Facts and Rules Syntax
	If
	And
	Or
	Not
	If-then-else

	Operators
	Commenting
	Querying the Knowledge Base

	Your Task
	Knowledge Base
	Queries
	Prolog Output Clarifications

	Writeup
	Written Questions
	SRC Questions

	Grading
	Install and Handin Instructions

