
Gear Up

Written and complied by Bowen He

1 Basic Python Usage

1.1 Conditional Control

Use if-else branches to execute different code blocks under different Boolean
conditions!

The basic usage for this functionality looks like the following:

1 if condition1:

2 code block 1

3 elif condition2:

4 code block 2

5 else:

6 code block 3

The Python interpreter will check each condition from top to bottom. If condi-
tion 1 is satisfied, then code block 1 will be executed, and the following condi-
tions will not be checked. Otherwise, the interpreter will continue to check the
conditions one by one, with elif standing for “else if” in the code above. If
none of the conditions can be satisfied, we will execute the code block inside
the else branch. It serves as a back up case, which why we don’t specify any
condition there.

1.2 Loops

Use loop operations to execute the same block several times! One thing to note
is that, while these loops let you repeat some operations, it doesn’t limit you
to only repeating the same operations. Some variables can be changed in the
process, which should be your real purpose to use them.

1

1.2.1 For Loops

For loops provide a convenient way to scan over a sequence of elements, each of
which can be used in the subsequent code block directly.

You can find the basic usage for this kind of loop as following:

1 for x in [e_1 , e_2 , ..., e_n]:

2 # <code block >

For loops will help you to check each of the element in the list. This means that
x will be assigned different values for each circle. At the mean time, you may
find it helpful to use x in your code. Check this example.

1 for x in range (10):

2 y = (x + 2)**2

3 print(y)

In this example, x will be assigned values from 0 through 9. The code block
within the loop will help to compute the function (x + 2)2 and then print out
correspondingly. We will get a result like this.

1 4

2 9

3 16

4 25

5 ...

6 121

As you may guess, the list can even contain elements that are not numbers at
all. If you have a list containing all the months in a year, like ["January",

"February", ..., "December"], a for loop will let you consider each element
in turn. One last thing to note is a special use for this functionality. If you only
care about the number of loops itself, rather than the exact numbers in your
list, you can easily use to replace x there in the code.

1.2.2 While Loops

While loops allow a block be executed over and over again as long as the con-
dition is satisfied.

In the picture below, the code block will be executed while the expr evaluates
to True. In addition to that, we have break and continue there in the loop
as well. As you may guess, break gives you the option to jump out of the loop
at any time. When combined with if, you can terminate the loop under any
condition you specify. Unlike break, continue will bring you back to the head
of the loop, which means that the loop can be executed again if the condition
is still met.

2

1.3 Functions

Functions in Python basically name a block of code so that you can call it later
instead of typing the same code over and over again. For example, suppose you
want to compute the xth term of a Fibonacci sequence. You can achieve that
by constructing a function with the following code.

1 def Fibonacci(x):

2 number_1 = 0

3 number_2 = 1

4 i = 1

5 while i < x - 1:

6 number_1 = number_1 + number_2

7 number_2 = number_1 + number_2

8 i = i + 2

9 if x == i:

10 return number_1

11 elif x == i + 1:

12 return number_2

No matter what x you have, you can simply call Fibonacci(x), and Python
will pass the value to the function, returning the result of the computation.

You can even embed your function into other code structures!

1 for i in range(1, 10):

2 print(Fibonacci(i))

As you may have guessed, the result of the code block will be the Fibonacci
sequence up to the 9th term.

Now, let’s see the formal definition and usage of functions in Python.

3

In order to define a function, you always need to use the keyword def (short for
“define”) in front of your function name. In addition, you should also specify
the arguments you will use within the bracket after your function name. Note
that we call these arguments as formal arguments, since they are used as the
representatives of the actual arguments that you will pass in later when the
function is called somewhere else.

1 def your_function(x, y, z, ...):

2 code block 1

3 code block 2

4 ...

5 return a, b, c

The x, y, z, ... above will have no actual values at this point, they are only
used for the purpose of expressing your code logic. When I call the function in
another place with real values in the position, namely your_function(1, 2,

3,...), the actual values will be passed to the formal arguments, which then
will be used as a part of the computation with corresponding results returned
in the end.

2 Useful libraries

In this section, we will introduce the basic usage for the most important library
you will use in this course! Python is famous for the richness of libraries it can
provide to meet all kinds of needs in your coding life. In AI fields specifically,
some of the most useful and actively used libraries may include NumPy (matrix
operations), SciPy (machine learning tools), PyTorch (deep learning backbone
by Facebook), TensorFlow (deep learning backbone by Google), Pandas (data
analysis), along with some visualization tools like Matplotlib and Seaborn. We
will not cover all of them here and will focus on NumPy, which we will use the
most in this course. Feel free to search them up if you’re interested.

2.1 NumPy

To start using NumPy in your code, type import numpy as np at the top of
your file!

2.1.1 The NumPy Array

The data structure used by NumPy is something called an array, which is an
generalized matrix with n dimensions. You may know that we call a one-
dimensional number list as vector, a two-dimensional one as matrix. Beyond
that, we call any n-dimensional number lists as an array.

One unique property about NumPy is broadcasting. When you do element-wise
operations between two arrays of different shapes, broadcasting will replicate
some of the elements to make sure that the operations can be executed. For

4

example, for two arrays of the shape (3, 2) and (3, 1), NumPy will auto-
matically replicate the column of the second array to convert it into the shape
(3, 2), which then can be used to do element-wise computation like matrix
summation or element-wise multiplication. The underlying mechanism works
as follows: NumPy will start to check the pairs of the dimensions in a manner
from right to left. Two situations will be considered as compatible, which are 1)
the pair has the same dimensionality 2) one of the dimensions is one. NumPy
will replicate elements in the second situation to make the matrices match with
each other.

2.1.2 Constructing Arrays

You can use the following methods to construct an array.

1. np.arange(start, stop, step)

Create a one-dimensional NumPy array ranging from start to stop (ex-
clusive) in increments of step.

2. np.zeros(shape)

Create a NumPy array with all 0’s in it. The shape will conform to that
you give in the inner blanket.

3. np.ones(shape)

Similar to np.zeros(), with the only difference being that the elements
now become 1’s.

4. np.eye(rows, cols)

Create a 2-dimensional NumPy array in shape (rows, cols), with the
leading diagonal filled with 1’s and all the other places as 0’s.

5. np.array(x)

Convert x into a NumPy array. x is commonly a Python list. For example,
with

np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

you will get

[[1, 2, 3, 4],

[5, 6, 7, 8]]

2.1.3 Indexing Arrays

Suppose we have a NumPy array array as following.

[[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

We have several ways to index elements here.

5

array[1, 2] returns 6, which is the element located at the second row and the
third column. This way of indexing is similar to that you may use in a normal
matrix.

array[-1, 2] returns 9. Since -1 means “the last” in Python, we will get the
element at the last row and the third column.

array[:, :] returns the array itself. Since “:” stands for all elements across
a given axis, and we use “:” for both the rows and columns, we will index all
elements in the array, which is just the array itself.

Just like with a Python list, using “start:stop” in place of “:” will let us
index elements from start to stop (exclusive) on a given axis. So if we do
array[0:2, :], we will get

[[1, 2, 3],

[4, 5, 6]]

Similarly, if we use array[1, 1:], we will get

[5, 6]

2.1.4 Common Operations

1. array.shape and array.reshape()

For an existing array array, we can access array.shape to get its exact
shape in the form (s 1, s 2, ..., s n), where s i is the size of dimen-
sion i. You can also call array.reshape() to convert the array into a
totally new shape. Note that the total number of elements before and
after reshaping must stay the same. In addition, np.transpose() will
transpose an array as its name suggests. This operation converts an array
with shape (x, y, z) into one with shape (z, y, x).

2. element-wise multiplication and matrix multiplication
Use np.multiply() to do element-wise multiplication, while np.matmul()
can help to do matrix multiplication. As in linear algebra, for matrix
multiplication, you have make sure that the second dimension of the first
matrix matches the first dimension of the second matrix. Two matrices
with shapes like (3, 2) and (2, 4) can be used for this operation, while
(3, 3) and (2, 4) will be prohibited.

3. summation
np.sum() will execute summation along specific axis you assigned in the
arguments. In detail, if we do np.sum(array, axis=0), we sum up all
the elements along the first dimension of array, by which we will get [12,
15, 18] that is the result of 1+4+7, 2+5+8 and 3+6+9 correspondingly.
Similarly, np.sum(array, axis=1) will get the result as [6, 15, 24].
The trick is to find the direction that you use to count the number of
rows and columns. For example, since you count the number of rows
vertically from top to down, axis=0 will follow the same direction. And

6

similarly, counting columns horizontally will accord to that axis=1 follows
the horizontal direction.

3 Basic Linear Algebra

3.1 Matrix

A matrix is an arrangement of numbers in a rectangular form. It takes its origin
in linear equations, where people were trying to find a more compact form with
all variables omitted and only coefficients reserved. As a result, it’s found that
this form can not only be used to find the solutions of linear equations, but also
be used to represent linear computations themselves, making the matrix a very
common tool in STEM fields.

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


The matrix above is called an m × n matrix, meaning that there are m rows
and n columns in the matrix. Each row could represent a linear equation, with
n numbers in the row being the coefficients of the linear equation. For now, we
don’t need to worry about that. Knowing the appearance will be enough for
our purposes.

3.2 Linear Operations—Addition, Subtraction, Multipli-
cation, Division

3.2.1 Matrix and Matrix

The first thing to note is that only matrices of the same shape can be added
or subtracted. We can do these operations in an element-wise manner for any
number of matrices.

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

+


y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn



=


x11 + y11 x12 + y12 · · · x1n + y1n
x21 + y21 x22 + y22 · · · x2n + y2n

...
...

. . .
...

xm1 + ym1 xm2 + ym2 · · · xmn + ymn


Substituting all +’s for −, ×, or /’s in the equation above will yield the other
element-wise operations.

7

3.2.2 Matrix and Scalar

A scalar will be distributed across all elements of a matrix, with regard to either
multiplication or division you are doing.

So for example,
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

× a =


ax11 ax12 · · · ax1n

ax21 ax22 · · · ax2n

...
...

. . .
...

axm1 axm2 · · · axmn

 .

Mathematically speaking, we usually don’t add or subtract a matrix with a
scalar. However, since we have the concept of “broadcasting” in NumPy, we
allow these two operations to happen in our code. But remember, even though
this is allowed, what really happens is that the scalar is repeated to construct
a matrix of the same shape as the matrix involved, after which the operations
will be executed.

3.3 Matrix Multiplication

Now, imagine we have a bunch of linear expressions as the following.

a11x1 + a12x2 + · · · + a1nxm

a21x1 + a22x2 + · · · + a2nxm

...
am1x1 + am2x2 + · · · + amnxm

(1)

One thing to notice is that all of the expressions share the same variables of
x1 through xn. Do we have a way to simplify the expressions like we can with
the distributive property over addition? The answer is yes, and the resulting
operation is what we call a matrix multiplication. You may split the expressions
like so. 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ·


x1

x2

...
xn


Notice that, x1 through xn have been extracted as a column vector (or 1-
dimensional matrix), whose number of rows equals the number of columns of the
matrix in front. Matrix multiplication takes each row of the first matrix, multi-
plies it by the column vector in a element-wise manner, and sums the resulting
terms, helping us to retrieve the original linear expressions.

The above example is about the situation between one matrix and one vector.
How about the case where we want to multiply two matrices together? The

8

answer is to consider it as several sets of linear expressions, each of which is
following the same rule we’ve shown above. So, with

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ·


x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 · · · xnk

 .

what we do is apply the previous rule separately to each combination between
the first matrix and one of the column vectors of the second matrix, then orga-
nize them together into a new matrix.

If we let A represent the matrix with scalars aij , and xj represent column j of
the matrix with scalars xij , then the resulting matrix will be[

A · x1 A · x2 · · · A · xk

]
,

where each A · xj is a column vector that looks like
a11x1j + a12x2j + · · · + a1nxnj

a21x1j + a22x2j + · · · + a2nxnj

...
am1x1j + am2x2j + · · · + amnxnj

 ,

just like the list of linear expressions in (1).

With just two matrices, we can express k sets of linear expressions with m
expressions and n variables in each of them!

The only requirement for matrix multiplication is that the second dimension of
the first matrix matches the first dimension of the second matrix. Namely, the
shapes of the matrices involved should be m × n and n × k, sharing the same
number in between. From a linear equation point of view, this constraint can
be explained by the fact that we need to make sure that the number of the
coefficients is the same as the number of the variables.

9

