
CSCI1410 Fall 2021

Assignment 5: Reinforcement Learning

Code Submission 1 Due Thursday, November 4 at 11:59pm ET

Code Submission 2 Due Saturday, November 6 at 11:59pm ET

Code Due Monday, November 8 at 11:59pm ET

Writeup Due Tuesday, November 9 at 11:59pm ET

Late Day Deadline Thursday, November 11 at 11:59pm ET

1 Goals

In this assignment, you will implement several variants of an on-policy reinforcement learning (RL) algorithm
called SARSA. SARSA stands for state-action-reward-state-action, as the algorithm updates its Q-function
at the current state and action based on its current reward, its next state, and its next action. ThisQ-function
can be represented by a table, indexed by states—themselves represented by arbitrary (i.e., potentially non-
linear) features—and actions. Alternatively, it can be represented by an arbitrary function approximator, in
which case, the default representation is as a “linear” function of features and actions, which is approximated
by learning weights by which to linearly combine those features.1

The success of a reinforcement learning algorithm depends on the settings of its multiple parameters: α, γ,
ε, λ, etc. The process of optimizing these many parameters is called hyper-parameter optimization. Because
the search space over parameter settings is vast (they generally cannot be optimized independently), this
process is usually automated. Nonetheless, in this assignment, you will experiment with just a few settings
of these parameters, which you will hand tune by inspecting learning curves.

2 Silly Premise

After weeks of a broken phone screen, George has finally decided to drive over to the Apple store to get
his screen fixed. But by now, his car is an autonomous reinforcement-learning agent, as are all the taxis on
the road! George and his iPhone are thus at the mercy of how well autonomous cars—which are piloted by
RL—can drive. As George’s car is stuck deep in a valley, he first attempts to get to the Apple store via taxi.
Even if successful, he still has to get his own car out of the valley. Your RL algorithms will guide both his
taxi and his car.

3 Overview

This assignment has four parts:

1. In the first part, you will implement SARSA and SARSA-λ assuming a tabular representation of the
Q-function to help navigate a taxi to its destination.

1This second use of linear—linear combination—is what gives linear function approximation its name.

1

2. In the second part, you will implement SARSA-λ assuming the Q-function is represented using a linear
function approximator with Fourier basis functions to solve the mountain car problem, in which a car
is stuck in a deep valley.

3. In the third part, you will answer technical questions about RL. You will also submit learning curves
that vary with your hyperparameter settings, and summarize the results of your hyperparameter tuning.

4. In the fourth part, you will answer ethics questions about RL.

The coding portions of this assignment use OpenAI’s Gym, an open source library with a collection of
RL tasks, for use in developing and benchmarking RL algorithms. Gym is written in Python, and includes
multiple domains, ranging from the classics (Acrobot, CartPole, Pendulum, Mountain Car, etc.) to Atari
games. More details about Gym are provided in Section 8.

4 Taxi: SARSA and SARSA-λ

In this problem, your goal is to help George get from a depot to the Apple Store via taxi. A sample taxi
problem is depicted in Figure 1. It consists of a 5 × 5 grid, with four designated pick-up and drop-off
locations, R, G, B, and Y.

Figure 1: A visualization of the taxi problem, in which a passenger is waiting to be picked up at Y ((4, 0))
and dropped off at R ((0, 0)).

As the taxi environment is available in Gym, you have been relieved of the task of representing this
problem as an MDP: i.e., of identifying the relevant states and actions. Still, before diving into the code,
you should spend a few minutes thinking about how you might have tackled this representation problem.

Gym has also defined rewards for this problem somehow. Intuitively, the taxi should earn a high reward
when George is picked up at his location, and a very high reward when George is dropped off at the Apple
Store. Additionally, it might make sense to penalize the taxi for every step it takes, so that it doesn’t drive
around in circles wasting gas. Finally, it should also be heavily penalized if it drops George off anywhere
other than the Apple Store. All of this information is necessary to formulate the taxi problem as an MDP.

Just as the taxi can learn about its rewards by traversing its environment, it can likewise learn about
the transition probabilities. Indeed, both transition probabilities and rewards are unknown. If they were
known, the taxi could solve for an optimal policy using dynamic programming. But as this information is
unknown, the taxi faces a reinforcement learning problem. Your job is to implement SARSA and SARSA-λ,
so the taxi can learn something close to an optimal policy for picking up and dropping off passengers.

2

https://openai.com/
https://gym.openai.com/
https://gym.openai.com/envs/Taxi-v2/

4.1 Stencil Code

Here, we briefly describe the primary functions in each file in the taxi stencil code. Please refer to comments
in the code itself for more details. We also describe your specific coding tasks.

• tabular sarsa.py: This file contains the Tabular SARSA class, which is the parent class of the tabular
SARSA classes that you will be implementing. It contains three data structures: qtable for storing
state-action values, etable for storing eligibility values, and policy for storing a policy. It also contains
a function called learning policy, which returns an optimal action, namely one that optimizes the
Q-function.2 Do not edit this file.

• taxi sarsa.py: This file contains the SARSA class, within which you can find the learn policy func-
tion. This function takes as input all the relevant hyperparameters (e.g., α, γ, ε, λ, etc.), and returns
a policy, a Q-function, and a sequence of rewards. Here is where you should implement the SARSA
update rule. Doing so involves updating the qtable.

• taxi sarsa lambda.py: Like taxi sarsa.py, this file contains another SARSA class,3 within which
you can again find a learn policy function. Again, this function takes as input all the relevant
hyperparameters (e.g., α, γ, ε, λ, etc.), and returns a policy, a Q-function, and a sequence of rewards.
Here is where you should implement the SARSA-λ update rule. Doing so involves updating the qtable
and the etable.

N.B. Do not edit the LearningPolicy functions in taxi sarsa.py or taxi sarsa lambda.py. 4

4.2 Evaluation

To test your code, you can run python taxi sarsa.py test, which executes your learned policy on multiple
tasks, meaning multiple different locations in which to pick George up and drop him off. This testing code
outputs the total rewards earned on each task, and the number of steps taken. On average, your learned
policy should complete a task in fewer than 30 steps.

Running python taxi sarsa.py test also generates learning curves, again averaged over multiple runs.
The x-axis of these learning curves is the number of learning episodes (i.e., the number of tasks on which
the agent was trained), and the y-axis is the total reward earned during that episode, averaged across the
various runs. For SARSA, you should plot a learning curve over 1,000 episodes, and for SARSA-λ, 10,000.

You should also spend some, but not too much, time (e.g., 30 minutes) hand-tuning the hyperparameters
(α, ε, γ, λ, etc.), before submitting two of your best learning curves with your written handin.

The test argument to the taxi sarsa.py file calls the test policy function, which loads your policy
from policy taxi sarsa grading.npy, because that is the file name the autograder expects. You thus have
two choices when doing your own local testing: either change the name of your output files to
policy taxi sarsa grading.npy, or change test policy to refer to policy taxi sarsa.npy instead.

N.B. Although the test code does not load the qtable (it relies only on the policy), the autograder will
check that the policy you provide can be derived from the qtable you provide, so be sure to submit two
tables from the same run.

A Note about Grading: The SARSA classes save the policy and state-action values to two files,
policy taxi sarsa.npy and qvalues taxi sarsa.npy, respectively, for SARSA; likewise, for SARSA-λ.
You must submit versions of these files from a reasonable run for grading. To do so, rename the saved
files policy taxi sarsa grading.npy and qvalues taxi sarsa grading.npy, respectively; likewise, for
SARSA-λ. The autograder will only grade these renamed files.

2In future versions of this assignment, learning policy will be renamed something more accurate like choose action.
Apologies for not making the change this year. We did not want to risk breaking the autograder.

3In future versions of this assignment, we will not use the same name for two different classes. Apologies for not making the
change this year. We did not want to risk breaking the autograder.

4In future versions of this assignment, we will not mix-and-match naming conventions. We will follow a style guide, which
will mean we either name all functions using a style like LearningPolicy, or we will name all functions using a style like
learn policy. Apologies for not making this fix this year. We did not want to risk breaking the autograder.

3

5 Mountain-car

George’s car is stuck at the bottom of a valley. The Apple store, however, is at the top of the mountain,
marked with a green flag. Figure 2 depicts this domain.

Figure 2: A visualization of the mountain car problem.

The car does not have enough power to just drive up the hill. Instead, it needs to rock back and forth
until it gains enough momentum. So, it’s actions are move left, move right, and skip (i.e., do nothing).

The car’s state space S is continuous. It consists of two real-values, namely the car’s position along
the x-axis and its velocity. Since S = R2, we cannot represent the Q-function for mountain car as a table.
Instead, we will use a linear function approximator.

We start by representing the state-value function V using a linear function approximator. To do so, we
choose a set of n basis functions, φi : S → Rm, for i ∈ {1, . . . , n}, each of which maps a state s ∈ S onto an
m-dimensional basis. We then define the V -function to be a weighted combination of these basis functions:
i.e., for weights w ∈ Rm,

V (s) =

n∑
i=1

wiφi(s) (1)

Therefore,

Q(s, a) = R(s, a) + γEs′∈S [V (s′)] (2)

= R(s, a) + γEs′∈S

[
n∑

i=1

wiφi(s
′)

]
(3)

For this assignment, we recommend the Fourier basis. The univariate nth order Fourier basis consists
of n + 1 basis functions defined as follows: φi(x) = cos(πix), for i ∈ {0, . . . , n} and x ∈ S. For a multi-
dimensional state space, such as that of the mountain car problem, where the number of dimensions d = 2,
the nth order Fourier basis consists of (n+ 1)d basis functions defined as follows: φi(x) = cos(πci ·x), for all
i ∈ {0, . . . , (n+ 1)d} and x ∈ S, where the c vectors range over all d-dimensional vectors in {0, . . . , n+ 1}d.
For more details and motivation for the Fourier basis, we refer you to a paper by George himself.

Like the taxi, the mountain car would like to execute an optimal policy. Again, the rewards and transitions
are unknown; only a simulator is provided (within Gym). So the mountain car faces a reinforcement learning
problem. Your job is to implement SARSA-λ with function approximation, so the mountain car can learn
something close to an optimal policy. Pseudocode for SARSA-λ can be found in this online RL textbook.

5.1 Stencil Code

Here, we briefly describe the primary functions in mountain car sarsa fourier.py. Please refer to com-
ments in the code itself for more details. We also describe your specific coding tasks.

Please do not modify any functions except those you are explicitly instructed to modify.

1. normalize state: This function normalizes each dimension of the state (position and velocity) to lie
within the range [0, 1]. Normalization is not strictly necessary, as the weights may be adjusted to

4

http://cs.brown.edu/people/gdk/pubs/fourier.pdf
http://incompleteideas.net/book/first/ebook/node89.html

account for any differences in magnitude among the various state dimensions, but it does simplify and
often speed up the learning process.

2. phi: This function takes in a normalized state and computes its value, given a basis. You need to
fill in this function.

3. create multipliers: This function creates the Fourier basis coefficients (i.e., the c vectors). You
need to fill in this function.

4. action value: This function returns an action value, given a state-action pair.

5. learning policy and test policy: These functions return an optimal action, given a state, with and
without exploration, respectively. If an agent is no longer learning, it need not need explore any further
either; hence, a separate function.5

6. SARSA Learning: This function should update the weights associated with the basis functions using
the SARSA-λ algorithm. Some of the function is filled in for you, to interface to the rest of the code,
but you need to fill in the rest.

7. SARSA Test: This function uses the weights learned or saved to act over a specified number of episodes.
You can run this function to test your policy before you submit it.

5.2 Evaluation

To test your code, you can run python mountain car sarsa fourier.py test, which executes your learned
policy multiple times. This testing code outputs the total rewards earned on each execution, and the number
of steps taken. On average, your learned policy should complete the task in fewer than 400 steps.

Running python mountain car sarsa fourier.py test also generates learning curves,6 again averaged
over multiple runs. The x-axis of these learning curves is the number of learning episodes (i.e., the number
of tasks on which the agent was trained), and the y-axis is the total reward earned during that episode,
averaged across the various runs. You should plot a learning curve over 10,000 episodes.

You should also spend some, but not too much, time (e.g., 30 minutes) hand-tuning the hyperparameters
(α, ε, γ, λ, etc.), before submitting one of your best learning curves with your written handin.

Note that order of the Fourier basis is an important parameter. We initialized this value to 3. It should
remain odd (e.g., 1, 5, 7, etc.), but you should otherwise feel free to experiment with alternatives.

The test argument to the mountain car sarsa fourier.py

file loads your policy from policy mountain car saved weights.npy.
This time, that is not the name the autograder expects! (Apologies for the inconsistencies in this assignment.)

A Note about Grading: The SARSA Learning function saves the learned weights to a file called
mountain car saved weights.npy. You must submit a version of this file from a reasonable run for grading.
To do so, rename the saved file mountain car saved weights grading.npy. The autograder will only grade
a file by this latter name.

6 Written Questions

Answer the following questions in clearly labeled sections.

1. Describe any possible state space representation for the taxi environment (even the one used in Gym).

5This is poor programming practice. Can you see why? Because there should not be two functions where one (test policy)
is a special case of the other (learn policy). In future versions of this assignment, test policy will be defined as learn policy

with epsilon fixed at 0, to prevent exploration.
6Actually, it does not—unfortunately—but it should. For extra credit, please go ahead and adjust the test code so that it

does generate plots, so that you can more easily tune the hyperparameters of your implementation.

5

2. Submit your learning curves, and explain what you gleaned from them. What settings of the hyper-
parameters did you find worked best in the taxi problem? And what about in mountain car?7 What
happened when you changed the order of the Fourier basis?

3. Recall that Arthur Samuel used machine learning back in 1959 to train his checker-playing program.
More relevant this assignment, in 1992 Gerry Tesauro, used reinforcement learning with (non-linear)
function approximation in his award-winning backgammon-playing program, TD-Gammon.8 In both
cases, the programs improved their play (i.e., learned) by playing against themselves.

How can you formulate learning to play a two-player game, like backgammon or Go, as an MDP?
What are the states, the actions, the rewards, and the transitions? And why does it make more sense
to formulate such a problem as a reinforcement learning problem, in which rewards and transitions are
unknown to the learning agent, rather than attempt to solve such an MDP via dynamic programming?

7 Ethics Questions

Read the article here about Github Copilot. Github Copilot is Github’s recent invite-only to use tool for to
assist programmers. Github copilot is partially based on an NLP model from GPT-3, which was partially
trained using reinforcement learning. It is trained using open source repositories on Github. Please read the
following article on Github Copilot and answer the following questions:

1. Should Github be required to aquire the explicit consent of the contributors to open source repositories
to use their code as training data for Copilot. In general. should explicit consent be required to use
open source data?

2. If sensitive data such as API keys are leaked by Github Copilot AI is it the responsibility of Github
to prevent that or is it the responsibility of the original creators of the code to make that sensitive
information more secure. Or another party entirely?

8 Gym Installation

There are several packages that are needed for this project. Some of the necessary packages are: gym,
matplotlib, and numpy. If you use the course virtual environment you shouldn’t need to install anything, but
if you are working locally you may need to install these by running pip install ‘gym[all]’. Additionally,
here are two tutorials that explain how to use AI gym to solve the taxi and mountain car problems.9

9 Grading

As usual, you can refer to rubric.txt to see how heavily each part of this assignment is weighted.
We will autograde the output of your SARSA and SARSA-λ implementations for the taxi problem using

the files you submit, containing your learned policy and Q-values. We will simulate your policy on 10 random
tasks, and award you full points if the average number of steps to completion is under 30.

We will also autograde the output of your SARSA-λ implementation for mountain car using the file you
submit, containing your learned weights. Again, we will simulate your policy 10 times, but as mountain car
is a harder problem, we will award you full points if the average number of steps to completion is under 400.

In all cases, the time limit for each test run is 30 seconds. In other words, if ever your policy does not
complete a task within this time limit, you will score 0 on that test run.

7For extra credit, you may submit learning curves for mountain car as well as the taxi problem. You are also permitted to
post your plotting code on Piazza, as that would be a help to your fellow students. Please let Amy know if you do this, so that
she can award you good Samaritan points (and can recommend you as a TA for next year!).

8Now you know what “TD” means! Hurray!
9We cannot vouch for their accuracy. There are many tutorials out there. If you find better ones, please share on Piazza.

6

https://www.fast.ai/2021/07/19/copilot/
https://towardsdatascience.com/reinforcement-learning-lets-teach-a-taxi-cab-how-to-drive-4fd1a0d00529
https://towardsdatascience.com/getting-started-with-reinforcement-learning-and-open-ai-gym-c289aca874f

In addition to the aforementioned autograding, we will also verify that your submitted code corresponds
to your submitted data files and learning curves. If we find that the data files and/or the learning
curves that you submit could not have been generated by your code, you will earn a zero for
the entire assignment.

Note: After generating your .npy files, you need to rename them by appending grading.npy to the
end of each file name. Incorrectly named files will not be graded.

10 Install and Handin Instructions

To install, accept the GitHub Classroom assignment at this link. This will create a private GitHub repository
with the stencil code for you to work on the assignment.

To handin,

1. Make sure to push any changes you want to test to your private repository. You can do this by running

git add .

git commit -m "<a commit message describing what you changed>"

git push

2. On Gradescope, click on the assignment you are submitting for.

3. Under “Submission Method”, please select GitHub.

4. Under “Repository”, you can search for your repository by typing “csci-1410” and selecting the repos-
itory for this assignment.

5. Under “Branch”, you can select any branch that you want to be graded. So if you’re testing something
on a branch, you can see how its functionality performs here, before merging it to master. Feel free to
upload your assignment as many times as you like before the deadline.

In accordance with the course grading policy, your written homework should not have any identifiable
information on it, including your banner ID, name, or CS login.

7

https://classroom.github.com/a/go7hYD7v
https://cs1410-website.vercel.app/files/Collaboration_Policy.pdf

	Goals
	Silly Premise
	Overview
	Taxi: SARSA and SARSA-
	Stencil Code
	Evaluation

	Mountain-car
	Stencil Code
	Evaluation

	Written Questions
	Ethics Questions
	Gym Installation
	Grading
	Install and Handin Instructions

