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Planning
Fundamental to AI:

• Intelligence is about behavior.



The Planning Problem
Finding a sequence of actions to achieve some goal.



Shakey the Robot
Research project started in 1966.

Integrated:
• Computer vision.
• Planning.
• Control.
• Decision-Making.
• KRR



Classical Planning
Describe the world (domain) using logic.

Describe the actions available to the agent.
In terms of:

• When they can be executed. 
• What happens if they are.

Describe the start state and goal.

Task:
•  Find a plan that moves the agent from start state to goal



The World and the Model

KB

observation

planning (syntactic)

true in the world

action (reality)



STRIPS Planning
Represent the world using a KB of first-order logic.

Actions can change what is currently true.

Describe the actions available:
• Preconditions
• Effects

must be true in KB (t)

change to KB after execution (t+1)



PDDL
Planning Domain Description Language

• Standard language for planning domains
• International programming competitions
• At version 3, quite complex.

Separate definitions of:
• A domain, which describes a class of tasks.

• Predicates and operators.

• A task, which is an instance of domain.
• Objects.
• Start and goal states.



Examples: Blocks World
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A
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PDDL: Predicates
A predicate returns True or False, given a set of objects.

(define (domain blocksworld)
(:requirements :strips :equality)
(:predicates (clear ?x)
                  (on-table ?x)
                  (arm-empty)
                  (holding ?x)
                  (on ?x ?y))

(example PDDL code from PDDL4J open source project)

cf. predicates in
first-order logic



PDDL: Operators
Operators:

•  Name
•  Parameters
•  Preconditions
•  Effects

(:action pickup
  :parameters (?ob)
  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
  :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) 
               (not (arm-empty))))



PDDL: A Problem
(define (problem pb3)
   (:domain blocksworld)
   (:objects a b c)
   (:init (on-table a) (on-table b)   (on-table c)  
          (clear a)  (clear b) (clear c) (arm-empty))
   (:goal (and (on a b) (on b c))))

B A C
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PDDL: States
As in HMMs, state describes the configuration of the world at 
a moment in time.

Conjunction of positive literal predicates.
• (on-table a) 
• (on-table b) 
• (on-table c) 
• (clear a)  
• (clear b) 
• (clear c) 
• (arm-empty)



Closed World Assumption
Those not mentioned assumed to be False.
(closed world assumption)

c.f. Knowledge base concept of a model.
• Set of models consistent with KB.
• Unknown things are unknown!

Why?

• Avoid inference
• No uncertainty about which actions can be executed.
• No uncertainty about goal. 
• Planning is hard enough.



PDDL: Operators
(:action putdown
  :parameters  (?ob)
  :precondition (and (holding ?ob))
  :effect (and (clear ?ob) (arm-empty) (on-table ?ob) 
               (not (holding ?ob))))

Note! Implicit Markov assumption.



PDDL: Goals
Conjunction of literal predicates:

• (and (on a b) (on b c))

Predicates not listed are don’t-cares.

Each goal is thus a partial state expression.

Why?

•We want to refer to a set of goal states.



PPDL: Action Execution
Start state:

(on-table a) (on-table b)   (on-table c)  
(clear a)  (clear b) (clear c) (arm-empty)

Action: pickup(a)
• Check preconditions
• Decide to execute.
• Delete negative effects.
• Add positive effects.

(:action pickup
  :parameters (?ob)
  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
  :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) 
               (not (arm-empty))))

Next state:
(on-table a) (on-table b)   (on-table c)  
(clear a)  (clear b) (clear c) (arm-empty)
(holding a)



Example
State:   (on-table a) (on-table b)   (on-table c)  
           (clear a)  (clear b) (clear c) (arm-empty))
Goal:   (and (on a b) (on b c))

B A C

(:action pickup
  :parameters (?ob)
  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
  :effect (and (holding ?ob) (not (clear ?ob)) 
               (not (on-table ?ob)) 
               (not (arm-empty))))

pickup(b)



Example
State:   (on-table a) (on-table b)   (on-table c)  
           (clear a)  (clear b) (clear c) (arm-empty) (holding b))
Goal:   (and (on a b) (on b c))

B

A C

after pickup(b) …



Example
State:   (on-table a) (on-table c)  
           (clear a) (clear c) (holding b))
Goal:   (and (on a b) (on b c))

B

A C

(:action stack
  :parameters  (?ob ?underob)
  :precondition (and  (clear ?underob) (holding ?ob))
  :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
               (not (clear ?underob)) (not (holding ?ob))))

stack(b, c)



Example
State:   (on-table a) (on-table c)  
           (clear a) (clear c) (holding b) 

(arm-empty) (clear b) (on b, c))
Goal:   (and (on a b) (on b c))

B

A C

after stack(b, c) …



Example
State:   (on-table a) (on-table c)  
           (clear a) (arm-empty) (clear b) (on b, c))
Goal:   (and (on a b) (on b c))

B

A C

(:action pickup
  :parameters (?ob)
  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
  :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) 
               (not (arm-empty))))

pickup(a)



Example
State:   (on-table a) (on-table c)  
           (clear a) (arm-empty) (clear b) (on b, c) (holding a))
Goal:   (and (on a b) (on b c))

BA

C

after pickup(a) …



Example
State:   (on-table c)  
           (on b, c) (clear b) (holding a))
Goal:   (and (on a b) (on b c))

BA

C

(:action stack
  :parameters  (?ob ?underob)
  :precondition (and  (clear ?underob) (holding ?ob))
  :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
               (not (clear ?underob)) (not (holding ?ob))))

stack(a, b)



Example
State:   (on-table c)  
          (on a b) (clear b) (on b, c) (holding a))
Goal:   (and (on a b) (on b c))

B

A

C



Formal Definition
1. A set of predicates P, each with pn parameters.
2. A set of objects O.  

3. Literal predicates L: set of predicates from P with bound 
parameters from O.  

4. A state: a list of positive ground literals,           .
5. A goal test: a list of positive ground literals,           .  

6. Operator List:
• Name
• Parameters
• Preconditions
• Effects

s ✓ L
g ✓ L



Planning
Search problem.

• Nodes are states.
• Actions are applicable operators.
• Goal expression is goal test.

(on-table a) (on-table b)   
(on-table c)  (clear a)  (clear b) 
(clear c) (arm-empty)

(on-table b) (on-table c)  
(clear b) (clear c) (holding a)

pickup(a)

…



Forward Search
Breadth- or depth-first search typically hopeless (high b, d)
We must use informed search.

Major approach to solving planning problems:
• Use this knowledge to automatically construct a domain-

specific heuristic.

The problem has a lot of known structure:
• States are conjunctions of predicates.
• We know the goal predicates.
• We know the predicates deleted and added by actions.



General Strategy
Relaxation

• Make the problem easier 
• Compute distances in easier problem
• Use distances as a heuristic to the hard problem.

FF planner (major breakthrough, circa 2000)
• Relax problem by deleting negative effects
• Actually solve relaxed problem using a planner

(:action pickup
  :parameters (?ob)
  :precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
  :effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) 
               (not (arm-empty))))



FFPlan
Why is the problem with deleted negative effects easier?
 
Recall!
Goal

• Conjunction of positive literals.

Actions
• Preconditions (conjunction of positive literals)
• Effects (adds and deletes)

• Each action execution monotonically adds applicable actions.
•Grounded actions need only be executed once.
• Progress towards goal expression monotonic.



Alternative Approach
Regression Planning

• Start at the goal (partial state)
• Regress backwards

(and (on a b)
 (on b c)))

putdown(a)

(and (holding a)
(clear b)
 (on b c)))



Regression Planning
What must we compute?

putdown(a)

(and (holding a)
(clear b)
 (on b c)))

partial state description

counterfactual



Regression Planning
Why do we expect this to work?

(on-table a) (on-table b)   
(on-table c)  (clear a)  (clear b) 
(clear c) (arm-empty)

(and (holding a)
(clear b)
 (on b c)))

…

High branching 
factor

Generic

Specific

Low branching 
factor?

Narrow solution path



Bidirectional Search
s0

s1 s2

s3 s4 s5

g0

g1g2

g3g4g5



Exploiting Expert Knowledge
Often, domain expertise can be used to make planning more 
efficient.

One approach: control rules.
• Hand-written rules.
• Prune some node expansions.
• Effectively decrease branching factor.
• E.g., never move a goal block once placed.

Some progress on learning these automatically (e.g, PRODIGY)

s0

s1 s2

s3 s4 s5



Exploiting Domain Knowledge
Another approach: specify partial plans.

For example:
• Grasping a door handle always followed by turning it, then 

opening the door.

This can be written as a “macro-action”.
• A new operator composed of old operators.
• Aim: reduce minimum solution depth.

Logical extreme: hierarchical task network.
• Specify the solution as a hierarchy of partly specified tasks.
• Planner’s role is just to fill in the details.



Planning Competitions
Competitions held every few years

• Int. Conf. Automation and Planning
• Problems described in PDDL

2014 (deterministic)



Extensions - Time and Resources
What if there are temporal constraints in our problem?

• Actions take different amounts of time to execute.
• Preconditions depend on time.
• We can choose to wait for a period of time.

What if we are planning using resources?
• E.g., budget, raw material.
• Limited resources.
• Resources have levels, are exchangeable.

How to model, plan?

Often called scheduling - many real-life problems.



Time and Resources
Planning with time - notion of an interval.

• [t0, t1]
• Relationships between intervals
• Predicates hold during intervals
• Operators are parameterized by intervals

• Durative action
• Often allow for simultaneous actions

For resources:
•  Fixed number and level of resources to start
•  Actions require, and may produce, resource levels.
•  Reusable vs. consumable
•  Not typically an interval - usually a real number.



Time and Resources
Same principle for planning

• Search problem
• Nodes as state, operators

But much harder:
• Simultaneous actions
• Real-valued values
• Interval algebras

Solution is a schedule, not a plan.



DART
Planner used by the US military for logistics.

“Introduced in 1991, DART had by 1995 offset the monetary 
equivalent of all funds DARPA had channeled into AI research 
for the previous 30 years combined.”

“Directly following its launch, DART solved several logistical nightmares, saving 
the military millions of dollars. Military planners were aware of the tremendous 
obstacles facing moving military assets from bases in Europe to prepared bases in 
Saudi Arabia, in preparation for Desert Storm. DART quickly proved its value by 
improving upon existing plans of the U.S. military. What surprised many observers 
was DART's ability to adapt plans rapidly in a crisis environment.”

(wikipedia)


