
Probabilistic
Planning

George Konidaris
gdk@cs.brown.edu

Fall 2021

mailto:gdk@cs.brown.edu
mailto:gdk@cs.brown.edu

The Planning Problem
Finding a sequence of actions to achieve some goal.

Plans
It’s great when a plan just works …

 … but the world doesn’t work like that.

To plan effectively we must take uncertainty
seriously.

Probabilistic Planning
As before:
• Generalize deterministic logic to probabilities.
• Generalize deterministic planning to probabilistic planning.

This results in a harder planning problem.
In particular:

• Must model stochasticity.
• Plans can fail.
• Can no longer compute straight-line plans.

Stochastic Outcomes

s’

s

a

s’ = T(s, a)
C(s, a, s’)

s1

s
a

s2 s3

p2
p3p1

probability distribution
over transitions: T(s’ | s, a)  

R(s, a, s’)

Probabilistic Planning
Recall - systems that change over time:

• Problem has a state.
• State has the Markov property.

P (St|St�1, at�1, St�2, at�2, ..., S0, a0) = P (St|St�1, at�1)

only the previous state

but also the previous action
(controlled process)

The Markov Property
Needs to be extended for planning:
• depends only on and
• depends only on , , and

st+1 st at
rt st at

Current state is a sufficient statistic of agent’s history.

This means that:
• Decision-making depends only on current state
• The agent does not need to remember its history

st+1

agent chooses this

Probabilistic Planning
Markov Decision Processes (MDPs):

• The canonical decision making formulation.
• Problem has a set of states.
• Agent has available actions.

• Actions cause stochastic transitions.
• Transitions have costs/rewards.

• Transitions, costs depend only on previous state.

• Agent must choose actions to maximize expected reward
(minimize costs) summed over time.

Markov Decision Processes
: set of states
: set of actions
: discount factor

: reward function
 is the reward received taking action from state
 and transitioning to state .

: transition function
 is the probability of transitioning to state after
taking action in state .

S

A

R

R(s, a, s′)

γ

a s

s
′

T

T (s′|s, a) s
′

a s

< S, A, γ, R, T >

MDPs
Goal: choose actions to maximizes return: expected
sum of discounted rewards.

(equiv: min sum of costs)

R⇡(s) = E
" 1X

i=0

�iri

#

due to
stochasticity

all future
rewards now

matters
more

rewards
summed

Why Summed Rewards?

Episodic Problems
Some problems end when you hit a particular state.

Model: transition to absorbing state.
In practice: reset the problem. se

p=1
r=0

Example

0.9 0.05

0.05

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with p=0.9
Reward function: -1 for every step, 1000 for (absorbing) goal

Back to PDDL
MDPs do not contain the structure of PDDL.

• PPDDL: probabilistic planning domain definition language

Now operators have probabilistic outcomes:

(:action move_left
 :parameters (x, y)
 :precondition (not (wall(x-1, y))
 :effect (probabilistic
 0.8 (and (at(x-1)) (not at(x)) (decrease (reward) 1))
 0.2 (and (at(x+1)) (not(at(x))(decrease (reward) 1))
)
)

Example

B
A

C B
A

C

B
A

C

0.8

0.2

r=-2

r=-5

MDPs
Our goal is to find a policy:

 … that maximizes return: expected sum of
rewards. (equiv: min sum of costs)

⇡ : S ! A

R⇡(s) = E
" 1X

i=0

�iri

#

Policies and Plans
Compare a policy:

• An action for every state.

 … with a plan:
• A sequence of actions.

Why the difference?

Policies

Planning
So our goal is to produce optimal policy.

Note: we know T and R.

Useful fact: such a policy always exists.  
(But there might be more than one.)

⇡⇤(s) = max
⇡

R⇡(s)

Planning
The key quantity is the return given by a policy from a state:

Define the value function to estimate this quantity:

V ⇡(s) = E
" 1X

i=0

�iri

#

R⇡(s)

Value Functions

V is a useful thing to know.
Maybe we can use it to improve .
How to find V?

⇡

Monte Carlo
Simplest thing you can do: sample .R(s)

r
r r r r r r r

V ⇡(s) =
R1(s) +R2(s) + ...+Rn(s)

n

Do this repeatedly, average:

R =
X

�iri

Monte Carlo Estimation
One approach:

• For each state s
• Repeat many times:

• Start at s
• Run policy forward until absorbing state (or)
• Write down discount sum of rewards received
• This is a sample of V(s)
• Average these samples

This always works!
But very high variance. Why?

�t < ✏

Monte Carlo Estimation

R = r0 + �r1 + �2r2 + �3r3 + ...+ �nrn

random
variable

random
variable

random
variable

random
variable

random
variable

Doing Better
We need an estimate of R that doesn’t grow in variance as the
episode length increases.

Might there be some relationship between values that we can
use as an extra source of information?

R(s0) = r0 + �r1 + �2r2 + �3r3 + ...+ �nrn

R(s1) = �0r1 + �1r2 + �2r3 + ...+ �n�1rn

Bellman
Bellman’s equation is a condition that must hold for V:

value of this state

reward

value
of next state

V ⇡(s) = Es0 [r(s,⇡(s), s
0) + �V ⇡(s0)]

Dynamic Programming
We can use this expression to update V:

This algorithm is called dynamic programming

st

st+1 st+1 st+1

p
p p

V ⇡(s)
X

s0

[T (s0|s,⇡(s))⇥ (r(s,⇡(s), s0) + �V ⇡(s0))]

Value Iteration
This gives us an algorithm for computing the value
function for a specific given fixed policy:

Repeat:
• Make a copy of the VF.
• For each state in VF, assign value using BE.
• Replace old VF.

This is known as value iteration.

Value Iteration

do:

for each state s:

until V converges.

Notes:
• Fixed policy .
• V[s’] = 0, definitionally, if s is absorbing.

V [s] = 0, 8s

Vold = copy(V)

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �Vold[s
0]]

⇡

Policy Iteration
Recall that we seek the policy that maximizes .

Therefore we know that, for the optimal policy :

This means that any change to that increases anywhere
obtains a better policy.

π
∗

π V ⇡

V ⇡(s), 8s

V ⇡⇤
(s) � V ⇡(s), 8⇡, s

Policy Iteration
This leads to a general policy improvement framework:

1. Start with a policy
2. Estimate
3. Improve

a.

π

π Repeat

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.

V ⇡

⇡(s) = max
a

E [r + �V ⇡(s0)] , 8s

Policy Iteration

do:

for each state s:

for each state s:

while changes.

V [s] = 0, 8s

Vold = copy(V)

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �Vold[s
0]]

⇡(s) = argmaxa
X

s0

T (s, a, s0) [r(s, a, s0) + �V [s0]]

⇡

Finds an optimal policy in time polynomial in and .
(There are possible policies.)

|S| |A|
|A||S|

Policy Iteration

Improvements
Extensions to the basic algorithm largely deal with controlling
the size of the state sweeps:

• Not all states are reachable.
• Not all states need to be updated at each iteration.
• Not all states are likely to be encountered from a start

state.

Prioritized Sweeping

[Moore and Atkeson, 1993]

Prioritized Sweeping

vQueue.insert(s, 0),

while changes:
s = vQueue.pop()

for all sp such that :
vQueue.insert(sp,)

⇡

V [s] = 0, 8s

⇡(s) = argmaxa
X

s0

T (s, a, s0) [r(s, a, s0) + �V [s0]]

8s

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �V [s0]]

T (sp,⇡(s), s) > 0
�V [s]

DP algorithms can solve problems with millions of
states.

Elevator Scheduling
Crites and Barto (1985):
• System with 4 elevators, 10 floors.
• Realistic simulator.
• 46 dimensional state space.

MicroMAP
“Drivers and Loads” (trucking), CASTLE lab at Princeton

“the model was used by 20 of the largest truckload carriers to
dispatch over 66,000 drivers”

