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The Planning Problem
Finding a sequence of actions to achieve some goal.



Plans
It’s great when a plan just works …

 … but the world doesn’t work like that.

To plan effectively we must take uncertainty 
seriously.



Probabilistic Planning
As before:
• Generalize deterministic logic to probabilities.
• Generalize deterministic planning to probabilistic planning.

This results in a harder planning problem.
In particular:

• Must model stochasticity.
• Plans can fail.
• Can no longer compute straight-line plans.



Stochastic Outcomes
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Probabilistic Planning
Recall - systems that change over time:

• Problem has a state.
• State has the Markov property.

P (St|St�1, at�1, St�2, at�2, ..., S0, a0) = P (St|St�1, at�1)

only the previous state

but also the previous action
(controlled process)



The Markov Property
Needs to be extended for planning:
•        depends only on    and 
•     depends only on    ,     , and 

st+1 st at
rt st at

Current state is a sufficient statistic of agent’s history.

This means that:
• Decision-making depends only on current state
• The agent does not need to remember its history

st+1

agent chooses this



Probabilistic Planning
Markov Decision Processes (MDPs):

• The canonical decision making formulation.
• Problem has a set of states.
• Agent has available actions.

• Actions cause stochastic transitions.
• Transitions have costs/rewards.

• Transitions, costs depend only on previous state.

• Agent must choose actions to maximize expected reward 
(minimize costs) summed over time.



Markov Decision Processes
: set of states
: set of actions
: discount factor 

: reward function
                 is the reward received taking action    from state 
 and transitioning to state   .

: transition function
                is the probability of transitioning to state    after 
taking action    in state  . 
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MDPs
Goal: choose actions to maximizes return: expected 
sum of discounted rewards.

(equiv: min sum of costs)

R⇡(s) = E
" 1X

i=0

�iri

#

due to 
stochasticity

all future
rewards now 

matters
more

rewards
summed



Why Summed Rewards?



Episodic Problems
Some problems end when you hit a particular state.

Model: transition to absorbing state.
In practice: reset the problem. se

p=1
r=0



Example

0.9 0.05

0.05

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with p=0.9
Reward function: -1 for every step, 1000 for (absorbing) goal



Back to PDDL
MDPs do not contain the structure of PDDL.

• PPDDL: probabilistic planning domain definition language

Now operators have probabilistic outcomes:

(:action move_left
 :parameters (x, y)
 :precondition (not (wall(x-1, y))
 :effect (probabilistic
          0.8 (and (at(x-1)) (not at(x)) (decrease (reward) 1))
          0.2 (and (at(x+1)) (not(at(x))(decrease (reward) 1))
         )
)
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MDPs
Our goal is to find a policy:

 … that maximizes return: expected sum of 
rewards. (equiv: min sum of costs)

⇡ : S ! A

R⇡(s) = E
" 1X

i=0

�iri

#



Policies and Plans
Compare a policy:

• An action for every state.

 … with a plan:
• A sequence of actions.

Why the difference?



Policies



Planning
So our goal is to produce optimal policy.

Note: we know T and R.

Useful fact: such a policy always exists.  
(But there might be more than one.)

⇡⇤(s) = max
⇡

R⇡(s)



Planning
The key quantity is the return given by a policy from a state:

Define the value function to estimate this quantity:

V ⇡(s) = E
" 1X

i=0

�iri
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R⇡(s)



Value Functions

V is a useful thing to know.
Maybe we can use it to improve    .
How to find V?

⇡



Monte Carlo
Simplest thing you can do: sample        .R(s)

r
r r r r r r r

V ⇡(s) =
R1(s) +R2(s) + ...+Rn(s)

n

Do this repeatedly, average:

R =
X

�iri



Monte Carlo Estimation
One approach:

• For each state s
• Repeat many times:

• Start at s
• Run policy forward until absorbing state (or           ) 
• Write down discount sum of rewards received
• This is a sample of V(s)
• Average these samples

This always works! 
But very high variance. Why?

�t < ✏



Monte Carlo Estimation

R = r0 + �r1 + �2r2 + �3r3 + ...+ �nrn

random
variable

random
variable

random
variable

random
variable

random
variable



Doing Better
We need an estimate of R that doesn’t grow in variance as the 
episode length increases.

Might there be some relationship between values that we can 
use as an extra source of information?

R(s0) = r0 + �r1 + �2r2 + �3r3 + ...+ �nrn

R(s1) = �0r1 + �1r2 + �2r3 + ...+ �n�1rn



Bellman
Bellman’s equation is a condition that must hold for V:

value of this state

reward

value
of next state

V ⇡(s) = Es0 [r(s,⇡(s), s
0) + �V ⇡(s0)]



Dynamic Programming
We can use this expression to update V:

This algorithm is called dynamic programming

st

st+1 st+1 st+1

p
p p

V ⇡(s) 
X

s0

[T (s0|s,⇡(s))⇥ (r(s,⇡(s), s0) + �V ⇡(s0))]



Value Iteration
This gives us an algorithm for computing the value 
function for a specific given fixed policy:

Repeat:
• Make a copy of the VF.
• For each state in VF,  assign value using BE.
• Replace old VF.

This is known as value iteration.  



Value Iteration
 
do:

for each state s:
   

until V converges.

Notes:
•  Fixed policy  .
•  V[s’] = 0, definitionally, if s is absorbing.

V [s] = 0, 8s

Vold = copy(V )

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �Vold[s
0]]

⇡



Policy Iteration
Recall that we seek the policy that maximizes               .

Therefore we know that, for the optimal policy     :

This means that any change to    that increases      anywhere 
obtains a better policy. 

π
∗

π V ⇡

V ⇡(s), 8s

V ⇡⇤
(s) � V ⇡(s), 8⇡, s



Policy Iteration
This leads to a general policy improvement framework:

1. Start with a policy 
2. Estimate 
3. Improve 

a.  

π

π Repeat

This is known as policy iteration. 
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.

V ⇡

⇡(s) = max
a

E [r + �V ⇡(s0)] , 8s



Policy Iteration
 
do:

for each state s:
   

for each state s:

while     changes.

V [s] = 0, 8s

Vold = copy(V )

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �Vold[s
0]]

⇡(s) = argmaxa
X

s0

T (s, a, s0) [r(s, a, s0) + �V [s0]]

⇡

Finds an optimal policy in time polynomial in      and      .
(There are          possible policies.)

|S| |A|
|A||S|



Policy Iteration



Improvements
Extensions to the basic algorithm largely deal with controlling 
the size of the state sweeps:

• Not all states are reachable.
• Not all states need to be updated at each iteration.
• Not all states are likely to be encountered from a start 

state.



Prioritized Sweeping

[Moore and Atkeson, 1993]



Prioritized Sweeping
 
vQueue.insert(s, 0), 

while  changes:
s = vQueue.pop()

  

for all sp such that                             :
vQueue.insert(sp,            )

⇡

V [s] = 0, 8s

⇡(s) = argmaxa
X

s0

T (s, a, s0) [r(s, a, s0) + �V [s0]]

8s

V [s] =
X

s0

T (s,⇡(s), s0) [r(s,⇡(s), s0) + �V [s0]]

T (sp,⇡(s), s) > 0
�V [s]

DP algorithms can solve problems with millions of 
states.



Elevator Scheduling
Crites and Barto (1985):
• System with 4 elevators, 10 floors.
• Realistic simulator.
• 46 dimensional state space.



MicroMAP
“Drivers and Loads” (trucking), CASTLE lab at Princeton

“the model was used by 20 of the largest truckload carriers to 
dispatch over 66,000 drivers”


