Probabilistic
Planning

George Konidaris
gdk(@cs.brown.edu

Fall 2021

mailto:gdk@cs.brown.edu
mailto:gdk@cs.brown.edu

The Planning Problem

Finding a sequence of actions to achieve some goal.

Plans

It’s great when a plan just works ...

... but the world doesn’t work like that.

To plan effectively we must take uncertainty
seriously.

Probabilistic Planning

As before:

 Generalize deterministic logic to probabilities.
 Generalize deterministic planning to probabilistic planning.

This results in a harder planning problem.
In particular:
 Must model stochasticity.
* Plans can fail.
 Can no longer compute straight-line plans.

Stochastic Outcomes

s =T(s,a)
C(s,a,s)

probability distribution
over transitions: T(s’ | s, a)

R(s, 3, s')

Probabilistic Planning

Recall - systems that change over time:
* Problem has a state.
- State has the Markov property.

P(St‘st—laaft—laSt—27a't—27 ...,S(),Cl()) — P(St‘st—ba’t—l)

r

only the previous state

but also the previous action
(controlled process)

The Markov Property

Needs to be extended for planning:
* St+1depends only on s; and
- Ttdepends only on s¢, a¢,and %41

A. A. Mapron (1886).

agent chooses this

Current state is a sufficient statistic of agent’s history.

This means that:
* Decision-making depends only on current state
 The agent does not need to remember its history

Probabilistic Planning

Markov Decision Processes (MDPs):
» The canonical decision making formulation.
 Problem has a set of states.
- Agent has available actions.

- Actions cause stochastic transitions.
* Transitions have costs/rewards.
- Transitions, costs depend only on previous state.

- Agent must choose actions to maximize expected reward
(minimize costs) summed over time.

Markov Decision Processes

S : set of states
A : set of actions < S, A ~v,R,T >

v : discount factor

R : reward function
R(s,a,s’) is the reward received taking action a from state S
and transitioning to state s’.

T': transition function

T'(s'|s,a) is the probability of transitioning to state s’ after
taking action a in state s.

MDPs

Goal: choose actions to maximizes return: expected
sum of discounted rewards.

(equiv: min sum of cosgs)

due to all future rewards

stochasticity rewards now summed
matters

more

Why Summed Rewards!?

Episodic Problems

Some problems end when you hit a particular state.

YOU HND YOUR FRIENDS
HRE DEHD.

GHME OULR

Model: transition to absorbing state.
In practice: reset the problem.

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with p=0.9
Reward function: -1 for every step, 1000 for (absorbing) goal

Back to PDDL

MDPs do not contain the structure of PDDL.
* PPDDL: probabilistic planning domain definition language

Now operators have probabilistic outcomes:

(:action move_ left

:parameters (X, Y)

:precondition (not (wall(x-1, y))

:effect (probabilistic
0.8 (and (at(x-1)) (not at(x)) (decrease (reward) |))
0.2 (and (at(x*1)) (not(at(x))(decrease (reward) 1))

)

MDPs

Our goal is to find a policy:

T: 85 = A

... that maximizes return: expected sum of
rewards. (equiv: min sum of costs)

R7(s) = E |3 o'r
_1=0 _

Policies and Plans

Compare a policy:
- An action for every state.

... with a plan:
A sequence of actions.

Why the difference!?

ICIES

Pol

S, I

Planning

So our goal is to produce optimal policy.

T (s) = max R™(s)

Note: we know T and R.

Useful fact: such a policy always exists.
(But there might be more than one.)

Planning

The key quantity is the return given by a policy from a state:

R™ (s)

Define the value function to estimate this quantity:

VT(s)=E iwiri
| i=0]

Value Functions

V is a useful thirJlg to know.
Maybe we can use it to improve 7I.
How to find V?

Monte Carlo

Simplest thing you can do: sample R(s).

R:ZWiTi

Do this repeatedly, average:

_ Ri(s) + Ra(s) + ... + Ru()

n

V7 (s)

Monte Carlo Estimation

One approach:

* For each state s
* Repeat many times:
- Startats
+ Run policy forward until absorbing state (or 7" < €)
* Write down discount sum of rewards received
* This is a sample of V(s)
* Average these samples

This always works!
But very high variance. Vhy!

Monte Carlo Estimation

R =ro+yri +7°ro +7’rs +

A 4 A
random
random variable
variable
random
variable ~andom

variable

o+,

A

random
variable

Doing Better

We need an estimate of R that doesn’t grow in variance as the
episode length increases.

Might there be some relationship between values that we can
use as an extra source of information!?

R(sg) = ro +yr +9°re + s + o Y"1

R(s1) =4"r +v're +vrs + ... + 9" 11y,

Bellman

Bellman’s equation is a condition that must hold for V:

V7(s) =By [r(s,m(s),s") + 7V (s)]

/

reward

value of this state value

of next state

Dynamic Programming

We can use this expression to update V:

()) ()

»

A p

) = Z s'ls,m(s)) x (r(s,m(s),s") +7V7(s"))

This algorithm is called dynamic programming

Value lteration

This gives us an algorithm for computing the value
function for a specific given fixed policy:

Repeat:
+ Make a copy of the VE.

* For each state in VF, assign value using BE.
- Replace old VF.

This is known as value iteration.

Value lteration

Vis| =0,Vs
do:

Vold — COpY(V)
for each state s:

V[s]=) T(s,n(s),8) [r(s,m(s),s)
until V convergess.
Notes:

* Fixed policy .
* V[s’] = 0, definitionally, if s is absorbing.

Policy Iteration

Recall that we seek the policy that maximizes V7" (s), Vs.

Therefore we know that, for the optimal policy 7™

>k

VT (s) >V7(s),Vrm,s

This means that any change to 7 that increases V" anywhere
obtains a better policy.

Policy Iteration

This leads to a general policy improvement framework:
|. Start with a policy 7
2. |[Estimate V7

3. Improve 7 Repeat
a. m(s) = maxE[r + V7 (s')], Vs

This is known as policy iteration.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.

Policy Iteration

Vis| =0,Vs
do:

Vold — COpY(V)
for each state s:

Vis| = > T(s,m(s),s") [r(s,7(s), ") +7Vorals']]
for each statse/ s:
m(s) = argmax,, ZT(S, a,s')[r(s,a,s) +~V[s']

while 7™ changes.

Finds an optimal policy in time polynomial in |:S| and |A4].
(There are |A|'®! possible policies.)

Policy Iteration

Improvements

Extensions to the basic algorithm largely deal with controlling
the size of the state sweeps:

- Not all states are reachable.
- Not all states need to be updated at each iteration.

- Not all states are likely to be encountered from a start
state.

Prioritized Sweeping

[Moore and Atkeson, 1993]

Prioritized Sweeping
Vis| =0,Vs
vQueue.insert(s, 0), Vs

while ™ changes:
s = vQueue.pop()

= > T(s,7(s),s") [r(s,7m(s),s") +V[s]
(s) = ;rgmaxa ZT(S, a,s')[r(s,a,s") +~yVI]s']]

for all s, such that 7T'(s,, 7(s),s) > 0:
vQueue.insert(sp, AV [s])

DP algorithms can solve problems with millions of
states.

Elevator Scheduling

' . Shaft Shaf Shaft : Shaf Button
Crites and Barto (1985): PSR Sy SR B
- -1 - - - dn
- System with 4 elevators, |10 floors. -+ + 1+ 4
. . . - —+ —+ —+ —+
* Realistic simulator. I L I 1 1
46 dimensional state space. L T
T T T - ++
T T T + T+
1 A 1 gt up
Algorithm AvgWait Squared Wait SystemTime Percent >60 secs
SECTOR 30.3 1643 59.5 13.50
HUFF 22.8 884 55.3 5.10
DLB 22.6 880 55.8 5.18
LQF 23.5 877 53.5 4.92
BASIC HUFF 23.2 875 54.7 4.94
FIM 20.8 685 53.4 3.10
ESA 20.1 667 52.3 3.12
RLd 18.8 593 45 .4 2.40

RLp 18.6 585 45.7 2.49

MicroMAP

“Drivers and Loads” (trucking), CASTLE lab at Princeton

“the model was used by 20 of the largest truckload carriers to
dispatch over 66,000 drivers”

network Forecast network

t=1 t=2 t=3
i

(Ih)

(lh)

® Driver nodes - ----eesseeseees

* Dpriver to task arcs

A Task nodes mnmensmmmam—_ = priver to forecast network

(empty repositioning)

