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MDPs

Agent interacts with an environment
At each time t:
® Receives sensor signal s;
e Executes action a;
® Transition:
® new sensor signal s¢41
®* reward 71y

Goal: find policy 7 that maximizes expected return (sum
of discounted future rewards):

s

i - _
max [k | R = g Vi,
: t=0 _



Markov Decision Processes

S : set of states
A : set of actions < S, A ~v,R,T >

v : discount factor

R : reward function
R(s,a,s’) is the reward received taking action a from state S
and transitioning to state s’.

T': transition function

T'(s'|s,a) is the probability of transitioning to state s’ after
taking action a in state s.

RL: one or both of T, R unknown.




The World




Real-Valued States

What if the states are real-valued?
® Cannot use table to represent Q.
® States may never repeat: must generalize.




RL

Example:

8/

4

States: (0,0, 0,,0,) (real-valued vector)
Actions: +1, -1, 0 units of torque added to elbow
Transition function: physics!

Reward function:-| for every step



Value Function Approximation

Represent Q function:

Q (s, aw” — R

parameter vector

Samples of form:

(i, @iy Tiy Sig1, Qig1)
Minimize summed squared TD error:

mu%“z (1i +YQ(Sit1, @ix1,w) — Q(84, as, w))Q
i=0



Value Function Approximation

Given a function approximator, compute the gradient and
descend it.

Which function approximator to use?

Simplest thing you can do:
® Linear value function approximation.
o Use set of basis functions @1, ..., On,
e Qs alinear function of them:

A

Q(s,a) =w- P(s,a) Zw]gbjsa



Function Approximation

One choice of basis functions:
* Just use state variables directly: |1, z, y]

What can be represented this way!?

A




Polynomial Basis

More powerful:
® Polynomials in state variables.
* Istorder: |1,z,y, xy]
o 2nd order:[1,z,y, zy, z°, y*, 22y, y°z, x2y”]
® This is like a Taylor expansion.

What can be represented!? 15/
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Function Approximation

How to get the terms of the Taylor series?

Each term has an exponent:

Gc(,y,2) = Y

be(@,y,2) = =21y 2"

dc(,y,2) = 2y° = 2 y*2"

be(T,y,2) = 22" = 27y’ 2"

be(w,y,2) =y 2 =2y 2

c; €10,...,n]

C2 ZCg

all combinations

generates basis
c=11,0,0]
c=11,2,0]
c=12,0,4]
c=10,3,1]



Function Approximation

Another:
e Fourier terms onh state variables.

* [1,cos cos(wy) cos(m[z + y])]
® COS( lﬁj y7

c=11,0] | iyl — COefﬁCient
vector




Objective Function Minimization

First, let’s do stochastic gradient descent.

As each data point (transition) comes in
+ compute gradient of objective w.r.t. data point
- descend gradient a little bit

A

Q(s,a) =w - P(s,a)

| T~

m&“Z (15 +yw - O(Sig1,0541) — W - PS4, ai))z
i=0



Gradient

For each weight w;:

8 n

(%Uj ; (7“7; T Yyw - ¢(5i+17 az’—I—l) —wr ¢(8“ ai))z
= 2 Z (ri +yw - @(Siv1, iv1) —w - G(si,05)) Pj(Si, i)
i=0
so for time i the contribution for weight w; is: - TD error




A-Gradient

The same logic applies when using eligibility traces.
Wit1 = Wi + a0p(s;, a;)
becomes

Wil = W; + aoe

‘;

where _
_vectors

e = TAer—1 + P(5¢, ar)

6():(_)

[Sutton and Barto, 1998]



RL

Example:

8/

4

States: (0,0, 0,,0,) (real-valued vector)
Actions: +1, -1, 0 units of torque added to elbow
Transition function: physics!

Reward function:-| for every step



Acrobot

Episode: 1




Acrobot

Sarsa(\) using the Fourier Basis: Acrobot
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Least-Squares TD

Minimize:

minz (ri +yw - P(Si41,ai41) —w - P(si, ai))Q
i=0

Error function has a bowl shape, so unique minimum. Just go
right there!



Least-Squares TD

Derivative set to zero:
T

Z (’UJ ' ¢(Si7 ai) — Ty —yw- ¢(Si—|-17 a’i—l—l)) ¢(817 ai)T =0
1=1

n

TZ d(si i) = Yw - Psi+1,0041)) ¢ (s0,00) = ) riob” (si, i)

w= A"1bh

A= Z 37,7@@ — YO 5z+17az+1)) ¢T(Si7a’i)

=1

Zmﬁ (8i, i)

i=1 [Bradtke and Barto, 1996}



LSTD(M)

Can derive the least-squares version of LSTD(A) in this way.
Try it at home!

*  Write down the obijective function ...
» Sample ri replaced by complex reward estimate.

* You will get a trace vector if you do some clever algebra.
- Trace vector is the same size as w.

[Boyan, 1999]



STD(\)

One inversion solves for w!

But:

- Computationally expensive.

- A may not be invert-able.

- Least-squares behavior sometimes unstable outside of data.

» LSPI: Least Squares Policy lteration

- Requires recomputing A over historical data.
* ai+ changes with the policy

[Lagoudakis and Parr, 2003]



Linear Methods Don’t Scale

Why not!
* They’re complete.
 They have nice properties (bowl-shaped error).
 They are easy to use!

How many basis functions in a complete nth order Taylor
series of d variables?

(n +1)°



Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
® At or near best human level
® Learn to play Backgammon through self-play
® |.5 million games
®* Neural network function approximator
®

TD(\)

Changed the way the best human players played.

Figure 3. A complex situation where TD-Gammon's positional judgment is ap-
parently superior to traditional expert thinking. White is to play 4-4. The obvious
human play is 8-4%, 8-4, 11-7, 11-7. (The asterisk denotes that an opponent
checker has been hit.) However, TD-Gammon's choice is the surprising 8-4%,
8-4, 21-17, 21-171 TD-Gammon's analysis of the two plays is given in Table 3.



Arcade Learning Environment
. ' ' '
O - S - S - S -

[Bellemare 201 3]




Deep Q-Networks
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[Mnih et al, 2015]



Atari

The algorithm tries to hit the ball back, but
itis yet too clumsy to manage.

[Mnih et al, 2015] video: Two Minute Papers



Atari

[Mnih et al, 2015]

Video Pinball ]
Boxing |
Breakout |
Star Gunner |
Robotank
Atlantis |
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull 7|
Assault |
Road Runner |
Kangaroo |
James Bond |
Tennis |
Pong
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Beam Rider |
Tutankham ]|
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Freeway |
Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
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H.ER.O. ]
Asterix |
Battle Zone |
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Chopper Command |
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River Raid |
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Ms. Pac-Man ]|
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Gravitar |
Private Eye |
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POLICY SEARCH



Policy Search

Represent policy directly:

m(s,a(0) : R™, R™ — [0, 1]
\

parameter vector
Objective function:

] . _
maxE | R = E YT
. 1=0 _

Why!



Policy Search

So far:improve policy via value function.

Sometimes policies are simpler than value functions:
* Parametrized program 7 (s, a|f)

Sometimes we wish to search in space of restricted policies.

In such cases it makes sense to search directly in policy-space
rather than trying to learn a value function.



Hill Climbing

What if you can’t differentiate 7?

Sample-based optimization:
» Sample some 6 values near your current best 6
* Adjust your current best to the highest value 6



Aibo Gait Optimization

from Kohl and Stone, ICRA 2004.

Fig. 2. The elliptical locus of the Aibo’s foot. The half-ellipse is defined by
length, height, and position in the z-y plane.

All told, the following set of 12 parameters define the Aibo’s
gait [10]:

e The front locus (3 parameters: height, z-pos., y-pos.)
e The rear locus (3 parameters)

o Locus length

o Locus skew multiplier in the -y plane (for turning)

o The height of the front of the body

o The height of the rear of the body

o The time each foot takes to move through its locus

o The fraction of time each foot spends on the ground




PoWER and PI2

More recently, two closely related algorithms:
® Generate some sample 6 values.
® Next 0 is sum of prior samples weighted by reward.

(Theodorou and Schaal 2010, Kober and Peters 201 |)



Policy Search

What if we can differentiate 7™ with respect to 6?
Policy gradient methods.
* Compute and ascend OR /00

® This is the gradient of return w.r.t policy parameters

Policy gradient theorem:

OR o on(s,a), .. _
-7 = ;(z (s); o (Q™(s,a) — b(s))

Therefore, one way is to learn Q and then ascend gradient.
Q need only be defined using basis functions computed from 6.



Postural Recovery

Learning Dynamic Arm Motions
for Postural Recovery

Scott Kuindersma, Rod Grupen, Andy Barto
University of Massachusetts Amherst

Humanoids 2011
Bled, Slovenia




Deep Policy Search

hanger hammer

Figure 1: Our method learns visuomotor policies that directly use camera image observa-

tions (left) to set motor torques on a PR2 robot (right).
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[Levine et al, 2016]



Deep Policy Search

automatically
requires robot collect visual
pose data
i N
learn initial
local tra|n pose CNN
controllers

S

lnltlal |n|t|al
controllers vusual features

collect samples
from Py

train global
policy g to match
local controllers p;

optimize local
controllers pj

[Levine et al, 2016]



Robotics

Learned Visuomotor Policy: Shape sorting cube

[Levine et al., 2016]



Reinforcement Learning

Very active area of current research, applications in:
Robotics

Operations Research

Computer Games

Theoretical Neuroscience

Al
® The primary function of the brain is control.




