
Supervised
Learning

George Konidaris
gdk@cs.brown.edu

Fall 2021

mailto:gdk@cs.brown.edu
mailto:gdk@cs.brown.edu

Machine Learning
Subfield of AI concerned with learning from data.

Broadly, using:
• Experience
• To Improve Performance
• On Some Task

(Tom Mitchell, 1997)

Supervised Learning
Input:
 X = {x1, …, xn}
 Y = {y1, …, yn}

Learn to predict new labels.
Given x: y?

inputs
labels training data

Classification vs. Regression
If the set of labels Y is discrete:

• Classification
• Minimize number of errors

If Y is real-valued:
• Regression
• Minimize sum squared error

Today we focus on classification.

Supervised Learning
Formal definition:

Given training data:
 X = {x1, …, xn}
 Y = {y1, …, yn}

Produce:
 Decision function

 That minimizes error:

inputs
labels

f : X ! Y

X

i

err(f(xi), yi)

Test/Train Split
Minimize error measured on what?

• Don’t get to see future data.
• Could use test data … but! may not generalize.

General principle:
Do not measure error on the data you train on!

Test/Train Split
Methodology:

• Split data into training set and test set.
• Fit f using training set.
• Measure error on test set.

Always do this.

Test/Train Split
What if you choose unluckily?
And aren’t we wasting data?

k-fold Cross Validation:
• Common alternative
• Repeat k times:

• Partition data into train (n - n/k) and test (n/k) data sets
• Train on training set, test on test set

• Average results across k choices of test set.

Key Idea: Hypothesis Space
Typically

• Fixed representation of classifier.
• Learning algorithm constructed to match.

Representation induces class of functions F, from which to find f.
• F is known as the hypothesis space.
• Tradeoff: power vs. expressibility vs. data efficiency.
• Not every F can represent every function.

fi 2 F

F = {f1, f2, …, fn}
• Set of possible functions that can be returned
• Typically infinite set (not always)
• Learning is finding that minimizes error.

Key Idea: Decision Boundary

+

+
+

+

+

+

-

-

-

-

-

-

-

-

- -

-
-

+ +
+

+
+

Boundary at which label changes

Decision Trees
Let’s assume:

• Two classes (true and false).
• Input: vector of discrete values.

What’s the simplest thing we could do?
How about some if-then rules?

Relatively simple classifier:
• Tree of tests.
• Evaluate test for for each xi, follow branch.
• Leaves are class labels.

Decision Trees
xi = [a, b, c]

each booleana?

b?

y=1 y=2

true

true false

c?

false

y=1

falsetrue

b?

y=2 y=1

true false

Decision Trees
How to make one?

Given
 X = {x1, …, xn}
 Y = {y1, …, yn}

repeat:
• if all the labels are the same, we have a leaf node.
• pick an attribute and split data bases on its value.
• recurse on each half.

If we run out of splits, and data not perfectly in one class, then
take a max.

Decision Trees
A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

a?

Decision Trees
A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

a?

true

y=1

Decision Trees
A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

a?

true

y=1

false

b?

Decision Trees
A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

a?

true

y=1

false

b?

true

y=2

Decision Trees
A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

a?

true

y=1

false

b?

true

y=2

false

y=1

Attribute Picking
Key question:

• Which attribute to split over?

Information contained in a data set:

How many “bits” of information do we need to determine the
label in a dataset?

Pick the attribute with the max information gain:

I(D) = �f1 log2 f1 � f2 log2 f2

Gain(E) = I(D)�
X

i

fiI(Ei)

Example

A B C L
T F T 1
T T F 1
T F F 1
F T F 2
F T T 2
F T F 2
F F T 1
F F F 1

Gain(E) = I(D)�
X

i

fiI(Ei)

I(D) = �f1 log2 f1 � f2 log2 f2

Decision Trees
What if the inputs are real-valued?

• Have inequalities rather than equalities.
• Can repeat variables.

a > 3.1

true

y=1

false

b < 0.6?

true

y=2

false

y=1

Hypothesis Class
What is the hypothesis class for a decision tree?

• Discrete inputs?
• Real-valued inputs?

The Perceptron
If your input (xi) is real-valued … explicit decision boundary?

+ +

+

+

+
+

-

-

-

-

The Perceptron
If x = [x(1), … , x(n)]:

• Create an n-d line
• Slope for each x(i)
• Constant offset

y = wx + c
f(x) = sign(w · x+ c)

gradient
offset

The Perceptron
Which side of a line are you on?

w

w · x = ||w||||x|| cos(✓)

x

✓

The Perceptron
How do you reduce error?

-
e = (yi � (w · xi + c))2

descend this gradient
to reduce error

@e

@wj
= �2(yi � (wi · xi + c))xi(j)

The Perceptron Algorithm
Assume you have a batch of data:
X = {x1, …, xn}
Y = {y1, …, yn}

set w, c to 0.
for each xi:
 predict zi = sign(w.xi + c)
 if zi != yi:
 w = w + a(yi - zi)xi

converges if data
is linearly separate

learning rate

https://www.youtube.com/watch?v=KcmIQ3zWYro
credit: Ambuj Tewari

https://www.youtube.com/watch?v=KcmIQ3zWYro
https://www.youtube.com/watch?v=KcmIQ3zWYro

Probabilities
What if you want a probabilistic classifier?

Instead of sign, squash output of
linear sum down to [0, 1]:

Resulting algorithm:
logistic regression.

�(w · x+ c)

Frank Rosenblatt
Built the Mark I in 1960.

Perceptrons
What can’t you do?

+ +

+

+

+
+

-

-

-

-

Perceptrons

1969

Neural Networks

�(w · x+ c)

logistic regression

Neurons

Neural Networks

x1 x2

h1 h2 h3

o1 o2

input layer

hidden layer

output layer

Neural Networks

x1 x2

h1 h2 h3

o1 o2

input layer

value computed
h1 = �(wh1

1 x1 + wh1
2 x2 + wh1

3)

�(wh2
1 x1 + wh2

2 x2 + wh2
3) �(wh3

1 x1 + wh3
2 x2 + wh3

3)

�(wo2
1 h1 + wo2

2 h2 + wo2
3 h3 + wo2

4)�(wo1
1 h1 + wo1

2 h2 + wo1
3 h3 + wo1

4)

value computed

x1, x2 2 [0, 1]

feed forw
ard

Neural Networks

x1 x2

h1 h2 h3

o1 o2

input data
x1, x2 2 [0, 1]

probability
of class 2

probability
of class 1

�(w1x1 + w2x2 + w3) �(w1x1 + w2x2 + w3) �(w1x1 + w2x2 + w3)

�(w1h1 + w2h2 + w3h3 + w4)

�(w1h1 + w2h2 + w3h3 + w4)

weights
(parameters)

Neural Classification
A neural network is just a parametrized function:

How to train it?

y = f(x,w)

(yi � f(xi, w))
2

Write down an error function:

Minimize it! (w.r.t. w)

Neural Classification
Recall that the squashing function is defined as:

@�(t)

@t
= �(t)(1� �(t))

�(t) =
1

1 + e�t

Neural Classification
OK, so we can minimize error using gradient descent.

To do so, we must calculate for each wi.

How to do so? Easy for output layers:

@e

@wi

@e

@wi
=

@(yi � oi)2

@wi
= 2(yi � oi)

@(yi � oi)

@wi
= 2(oi � yi)oi(1� oi)

chain rule

Interior weights: repeat chain rule application.

Backpropagation
This algorithm is called backpropagation.

Bryson and Ho, 1969
Rumelhart, Hinton, and Williams, 1986.

Deep Neural Networks

x1 x2

h11 h12 h13

o1 o2

hn1 hn2 hn3

….

Applications
• Fraud detection
• Internet advertising
• Friend or link prediction
• Sentiment analysis
• Face recognition
• Spam filtering

Applications
MNIST Data Set
Training set: 60k digits
Test set: 10k digits

