Supervised Learning II

George Konidaris
gdk@cs.brown.edu

Fall 2021
Machine Learning

Subfield of AI concerned with learning from data.

Broadly, using:
- **Experience**
- To Improve **Performance**
- On Some **Task**

(Tom Mitchell, 1997)
Supervised Learning

Input:
\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Learn to predict new labels.
Given \(x \): \(y \)?
Supervised Learning

Formal definition:

Given training data:
\[X = \{x_1, \ldots, x_n\} \text{ inputs} \]
\[Y = \{y_1, \ldots, y_n\} \text{ labels} \]

Produce:
Decision function \(f : X \rightarrow Y \)

That minimizes error:
\[\sum_i \text{err}(f(x_i), y_i) \]
Nonparametric Methods

Most ML methods are parametric:
- Characterized by setting a few parameters.
- \(y = f(x, w) \)

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.
K-Nearest Neighbors

Given training data:
\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]
Distance metric \(D(x_i, x_j) \)

For a new data point \(x_{\text{new}} \):
- find \(k \) nearest points in \(X \) (measured via \(D \))
- set \(y_{\text{new}} \) to the majority label
K-Nearest Neighbors
K-Nearest Neighbors

Decision boundary … what if k=1?
K-Nearest Neighbors

Properties:

• No learning phase.
• Must store all the data.
• \(\log(n) \) computation per sample - grows with data.

Decision boundary:

• \textit{any function, given enough data.}

\textbf{Classic trade-off:} memory and compute time for flexibility.
Classification vs. Regression

If the set of labels Y is discrete:
- Classification
- Minimize number of errors

If Y is real-valued:
- Regression
- Minimize sum squared error

Let’s look at regression.
Regression with Decision Trees

Start with decision trees with real-valued inputs.

```plaintext
a > 3.1

true
y=1

false

b < 0.6?

true
y=2

false
y=1
```
Regression with Decision Trees

... now real-valued outputs.
Regression with Decision Trees

Training procedure - fix a depth, k.

If you have $k=1$, fit the average.

If $k > 1$:
 Consider all variables to split on
 Find the one that minimizes SSE
 Recurse ($k-1$)

Choice of k prevents overfitting.
Regression with Decision Trees

Decision Tree Regression

- blue: max_depth=2
- green: max_depth=5
- data

(via scikit-learn docs)
Linear Regression

Alternatively, explicit equation for prediction.

Recall the Perceptron.

If \(x = [x(1), \ldots, x(n)] \):

- Create an \(n \)-d line
- Slope for each \(x(i) \)
- Constant offset

\[
f(x) = \text{sign}(w \cdot x + c)
\]
Linear Regression

Directly represent f as a linear function:

- $f(x, w) = w \cdot x + c$

What can be represented this way?
Linear Regression

How to train?

Given inputs:
 - $x = [x_1, \ldots, x_n]$ (each x_i is a vector, first element = 1)
 - $y = [y_1, \ldots, y_n]$ (each y_i is a real number)

Define error function:
Minimize summed squared error

$$\sum_{i=1}^{n}(w \cdot x_i - y_i)^2$$
Linear Regression

The usual story:

• Set derivative of error function to zero.

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 = 0
\]

\[
2 \sum_{i=1}^{n} (w \cdot x_i - y_i)x_i^T = 0
\]

\[
\left(\sum_{i=1}^{n} x_i^T x_i \right) w = \sum_{i=1}^{n} x_i^T y_i
\]

\[
w = A^{-1} b
\]

\[
A = \left(\sum_{i=1}^{n} x_i^T x_i \right) \quad \text{matrix}
\]

\[
b = \sum_{i=1}^{n} x_i^T y_i \quad \text{vector}
\]
Polynomial Regression

More powerful:

- Polynomials in state variables.
 - 1st order: $[1, x, y, xy]$
 - 2nd order: $[1, x, y, xy, x^2, y^2, x^2y, y^2x, x^2y^2]$

$y_i = w \cdot \Phi(x_i)$

What can be represented?
Polynomial Regression

As before …

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot \Phi(x_i) - y_i)^2
\]

\[
w = A^{-1} b
\]

\[
A = \sum_{i=1}^{n} \Phi^T(x_i) \Phi(x_i)
\]

\[
b = \sum_{i=1}^{n} \Phi^T(x_i) y_i
\]
Polynomial Regression
Overfitting
Overfitting
Ridge Regression

A characteristic of overfitting:
 • Very large weights.

Modify the objective function to discourage this:

\[
\min \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|
\]

error term

regularization term

\[
w = (A^T A + \Lambda^T \Lambda)^{-1} A^T b
\]
Neural Network Regression

\[\sigma(w \cdot x + c) \]

classification
Neural Network Regression

input layer

output layer

hidden layer
Neural Network Regression

\[w_1^{o1} h_1 + w_2^{o1} h_2 + w_3^{o1} h_3 + w_4^{o1} \]

value computed

\[w_1^{o2} h_1 + w_2^{o2} h_2 + w_3^{o2} h_3 + w_4^{o2} \]

value computed

\[h_1 = \sigma(w_1^{h1} x_1 + w_2^{h1} x_2 + w_3^{h1}) \]

input layer

\[x_1, x_2 \in [0, 1] \]
Neural Network Regression

A neural network is just a parametrized function: \(y = f(x, w) \)

How to train it?

Write down an error function:

\[
(y_i - f(x_i, w))^2
\]

Minimize it! (w.r.t. \(w \))

No closed form solution to gradient = 0. Hence, stochastic gradient descent:

- Compute \(\frac{d}{dw} (y_i - f(x_i, w))^2 \)
- Descend
Image Colorization

(Zhang, Isola, Efros, 2016)
Nonparametric Regression

Most ML methods are parametric:

• Characterized by setting a few parameters.
 \[y = f(x, w) \]

Alternative approach:

• Let the data speak for itself.
• No finite-sized parameter vector.
• Usually more interesting decision boundaries.
Nonparametric Regression

What’s the regression equivalent of k-means?

Given training data:

$X = \{x_1, \ldots, x_n\}$

$Y = \{y_1, \ldots, y_n\}$

Distance metric $D(x_i, x_j)$

For a new data point x_{new}:

find k nearest points in X (measured via D)

set y_{new} to the (weighted by D) average y_i labels
Nonparametric Regression

As \(k \) increases, \(f \) gets smoother.
Gaussian Processes
Applications

model and predict variations in pH, clay, and sand content in the topsoil

(Gonzalez et al., 2007)