Unsupervised Learning

George Konidaris gdk@cs.brown.edu

Fall 2021

Machine Learning

Subfield of AI concerned with learning from data.

Broadly, using:

- Experience
- To Improve Performance
- On Some Task

(Tom Mitchell, 1997)

Unsupervised Learning

Input:

$$X = \{x_1, ..., x_n\}$$
 inputs

Try to understand the structure of the data.

E.g., how many types of cars? How can they vary?

Clustering

One particular type of unsupervised learning:

- Split the data into discrete clusters.
- Assign new data points to each cluster.
- Clusters can be thought of as types.

Given:

• Data points $X = \{x_1, ..., x_n\}$.

Find:

- Number of clusters k
- Assignment function $f(x) = \{1, ..., k\}$

Clustering

One approach:

- Pick k
- Place k points ("means") in the data
- · Assign new point to ith cluster if nearest to ith "mean".

Major question:

Where to put the "means"?

Very simple algorithm:

- Place k "means" $\{\mu_1,...,\mu_k\}$ at random.
- Assign all points in the data to each "mean" $f(x_j) = i \text{ such that } d(x_j, \mu_i) \leq d(x_j, \mu_l) \forall l \neq i$
- Move each "mean" to mean of assigned data.

$$\mu_i = \sum_{v \in C_i} \frac{x_v}{|C_i|}$$

Remaining questions ...

How to choose *k*?

What about bad initializations?

How to measure distance?

Broadly:

- Use a quality metric.
- Loop through k.
- Random restart initial position.
- Use distance metric D.

Density Estimation

Clustering: can answer which cluster, but not does this belong?

Density Estimation

Estimate the distribution the data is drawn from.

This allows us to evaluate the probability that a new point is drawn from the same distribution as the old data.

Formal definition

Given:

• Data points $X = \{x_1, ..., x_n\}$,

Find:

PDF P(X)

Simple approach:

Model the data as a mixture of Gaussians.

Each Gaussian has its own mean and variance. Each has its own weight (sum to 1).

Weighted sum of Gaussians still a PDF.

Algorithm - broadly as before:

$$C_i = \{x_v | N(x_v | \mu_i, \sigma_i^2) > N(x_v | \mu_j, \sigma_j^2), \forall j\}$$

· Set mean, variance, weights to match assigned data.

$$\mu_i = \sum_{v \in C_i} \frac{x_v}{|C_i|}$$
 $\sigma_i^2 = \text{variance}(C_i)$ $w_i = \frac{|C_i|}{\sum_j |C_j|}$

Major issue:

- How to decide between two GMMs?
- How to choose k?

General statistical question: model selection. Several good answers for this.

Simple example: **Bayesian information criterion (BIC).** Trades off model complexity (k) with fit (likelihood).

Parametric:

- · Define a parametrized model (e.g., a Gaussian)
- Fit parameters
- Done!

Key assumptions:

- Data is distributed according to the parametrized form.
- · We know which parametrized form in advance.

What is the shape of the distribution over images representing flowers?

Nonparametric alternative:

- · Avoid fixed parametrized form.
- · Compute density estimate directly from the data.

Kernel density estimator:

$$PDF(x) = \frac{1}{nb} \sum_{i=1}^{n} D\left(\frac{x_i - x}{b}\right)$$

where:

- D is a special kind of distance metric called a kernel.
 - Falls away from zero, integrates to one.
- b is bandwidth: controls how fast kernel falls away.

$$PDF(x) = \frac{1}{nb} \sum_{i=1}^{n} D\left(\frac{x_i - x}{b}\right)$$

Kernel:

Lots of choices, Gaussian often works in practice.

Bandwidth:

- High: distant points have higher "contribution" to sum.
- Low: distant points have lower.

(wikipedia)

Dimensionality Reduction

$$X = \{x^1, ..., x^n\}$$
, each x^i has m dimensions: $x^i = [x_1, ..., x_m]$.

If m is high, data can be hard to deal with.

- High-dimensional decision boundary.
- Need more data.
- But data is often not really high-dimensional.

Dimensionality reduction:

- Reduce or compress the data
- Try not to lose too much!
- Find intrinsic dimensionality

Dimensionality Reduction

For example, imagine if x_1 and x_2 are meaningful features, and $x_3 ext{ ... } x_m$ are random noise.

What happens to k-nearest neighbors?

What happens to a decision tree?

What happens to the perceptron algorithm?

What happens if you want to do clustering?

Dimensionality Reduction

Often can be phrased as a projection:

$$f:X\to X'$$

where:

- $|X'| \ll |X|$
- our goal: retain as much sample variance as possible.

Variance captures what varies within the data.

Principle Components Analysis.

Project data into a new space:

- Dimensions are linearly uncorrelated.
- · We have a measure of importance for each dimension.

- Gather data $x^1, ..., x^n$.
- Adjust data to be zero-mean:

$$x^i = x^i - \sum_j \frac{x^j}{n}$$

- Compute covariance matrix C (m x m).
- Compute unit eigenvectors V_i and eigenvalues v_i of C.

Each V_i is a direction, and each v_i is its importance - the amount of the data's variance it accounts for.

New data points:

$$\hat{x}^i = [V_1, ..., V_p] x^i$$

Let's focus on this equation:

If you want to recover the original data point:

$$V = [V_1, ..., V_p]$$

SO:

$$\bar{x}^i = V_1 \hat{x}_1^i + V_2 \hat{x}_2^i + \dots + V_p \hat{x}_p^i$$

Reconstruction:

Every data point is expressed as a point in a new coordinate frame.

Equivalently: weighted sum of basis (eigenvector) functions.

Eigenfaces

Eigenfaces

(40 basis functions)

(Turk and Pentland, 1991)

Eigenfaces

(40 basis functions)

(Turk and Pentland, 1991)

PCA for Supervised Learning

Given data $x^1, ..., x^n$, labels $y^1, ..., y^n$:

- Compute compressor matrix V.
- Compute compressed data $\hat{x}^1, ..., \hat{x}^n$.
- · Use compressed data to learn classifier:

$$f: \hat{X} \to Y$$

• Given a new data point x, run f on Vx.

Why?

- Low amount of data relative to dimensionality.
- Dimensions may be highly correlated.
- Dimensions may be mostly noise/irrelevant/constant.
- Not all data need be labelled.

Another approach:

- Estimate intrinsic geometric dimensionality of data.
- Recover natural distance metric

Core idea: distance metric locally Euclidean

- Small radius r, connect each point to neighbors
- Weight based on Euclidean distance

Solve all-points shortest pairs:

- Transforms local distance to global distance.
- Compute embedding.

From Tenenbaum, de Silva, and Langford, Science 290:2319-2323, December 2000.

Application: Novelty Detection

Intrusion detection - when is a user behaving unusually?

First proposed by Prof. Dorothy Denning in 1986. (1995 ACM Fellow)

