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Machine Learning

Subfield of Al concerned with learning from data.

Broadly, using:
 Experience
+ To Improve Performance
* On Some Task

(Tom Mitchell, 1997)




Unsupervised Learning

Input:
X ={xi,...,xn} INputs

Try to understand the
structure of the data.

E.g., how many types of cars?
How can they vary?




Clustering

One particular type of unsupervised learning:
- Split the data into discrete clusters.
- Assign new data points to each cluster.
» Clusters can be thought of as types.

Formal definition
Given:
» Data points X = {x, ..., Xn}.
Find:
* Number of clusters k
» Assignment function f(x) = {I, ..., k}
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k-Means

One approach:
* Pick k
* Place k points (“means”) in the data
- Assign new point to ith cluster if nearest to ith “mean”.
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k-Means




k-Means

Major question:
- Where to put the “means™?

Very simple algorithm:
+ Place k“means” {{t1, ..., 4 } at random.

- Assign all points in the data to each “mean”
f(x;) =i such that d(x;, u;) < d(x;, )Vl # i

* Move each “mean” to mean of assigned data.

Ly
i = Z \Cz\




k-Means




k-Means




k-Means
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k-Means

Remaining questions ...

How to choose k?

What about bad initializations!?
How to measure distance!

Broadly:
+ Use a quality metric.
* Loop through k.
- Random restart initial position.
» Use distance metric D.



Density Estimation

Clustering: can answer which cluster, but not does this belong?




Density Estimation

Estimate the distribution the data is drawn from.

This allows us to evaluate the probability that a new point is
drawn from the same distribution as the old data.

Formal definition
Given:
- Data points X = {xi, ..., Xn},
Find:
+ PDF P(X)




GMM

Simple approach:
 Model the data as a mixture of Gaussians.

Each Gaussian has its own mean and variance.
Each has its own weight (sum to ).

Weighted sum of Gaussians still a PDF.



GMM




GMM

Algorithm - broadly as before:

- Place k “means”{#1, .-, 4k } at random.
- Set variances to be high.

- Assign all points to highest probability distribution.

O’i — {$U|N(CEU‘M“0'22) > N(foULMJ,O'JQ),\V/]}

» Set mean, variance, weights to match assigned data.

C

Ly
fi = o7 = variance(C; W; =
2 1c, SO S
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GMM

Major issue:
 How to decide between two GMMs!?

 How to choose k?

General statistical question: model selection.
Several good answers for this.

Simple example: Bayesian information criterion (BIC).
Trades off model complexity (k) with fit (likelihood).

2 DDA,
1 # data
# parameters

likelihood points

in model



Nonparametric Density Estimation

Parametric:
* Define a parametrized model (e.g., a Gaussian)
» Fit parameters
* Done!

Key assumptions:
» Data is distributed according to the parametrized form.
*  We know which parametrized form in advance.

What is the shape of the distribution *
over images representing flowers? 4
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Nonparametric Density Estimation

Nonparametric alternative:
* Avoid fixed parametrized form.
- Compute density estimate directly from the data.

Kernel density estimator:

T; — X
PDF(x anD< >

where:
D is a special kind of distance metric called a kernel.
- Falls away from zero, integrates to one.
* b is bandwidth: controls how fast kernel falls away.



Nonparametric Density Estimation

PDF(x anD( >

Kernel:
* Lots of choices, Gaussian often works in practice.

Bandwidth:
* High: distant points have higher “contribution” to sum.
* Low: distant points have lower.



Nonparametric Density Estimation
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Nonparametric Density Estimator




Dimensionality Reduction

X ={x!, ..., xn}, each x has m dimensions: x' = [xy, ..., Xm].

If m is high, data can be hard to deal with.
- High-dimensional decision boundary.
* Need more data.
 But data is often not really high-dimensional.

Dimensionality reduction:
- Reduce or compress the data
* Try not to lose too much!
* Find intrinsic dimensionality



Dimensionality Reduction

For example, imagine if x| and x2 are meaningful features, and
X3 ... Xm are random noise.

What happens to k-nearest neighbors!?
What happens to a decision tree!
What happens to the perceptron algorithm?

What happens if you want to do clustering?



Dimensionality Reduction

Often can be phrased as a projection:
f: X—-X
where:

o /
X7 << [X]
» our goal: retain as much sample variance as possible.

Variance captures what varies within the data.



PCA

Principle Components Analysis.

Project data into a new space:
- Dimensions are linearly uncorrelated.
*  We have a measure of importance for each dimension.



PCA




PCA

Gather data x/, ..., x".
Adjust data to be zero-mean:

J
: . T
xt =z — —
— N
. ° ']
- Compute covariance matrix C (m x m).
- Compute unit eigenvectors V; and eigenvalues v; of C.

Each Vi is a direction, and each v; is its importance - the amount
of the data’s variance it accounts for.

New data points:

3= [Vq,...,V,]a"




PCA

Let’s focus on this equation:

@D
A \

, original data point
compression m x |

matrix

compressed

data point
bx | pxm



PCA

If you want to recover the original data point:

V=1[V1,...,V,]
ZE‘Z __ V—lifﬁz
l Vis orthonormal
a—,:’l/ — VTj‘,;Z
SO:

' = V12 + Vadh + ... + Vi)



PCA

Reconstruction:

' =Vid| + Vadh + ... + Vpi

S

orthogonal
axes real valued numbers

Every data point is expressed as a
point in a new coordinate frame.

Equivalently: weighted sum of

basis (eigenvector) functions.



Eigenfaces




Eigenfaces

(Turk and Pentland, 1991)

(40 basis functions)



Eigenfaces

40 basis functions) (Turk and Pentland, 1991)



PCA for Supervised Learning

Given data x!, ..., xn, labels y!, ..., ym
+ Compute compressor matrix V.
. Compute compressed data 21, ..., 2"

+ Use compressed data to learn classifier:
f: X =Y

- Given a new data point x, run f on VXx.

Why!?

- Low amount of data relative to dimensionality.
- Dimensions may be highly correlated.
+ Dimensions may be mostly noise/irrelevant/constant.

« Not all data need be labelled.



ISOMAP

Another approach:
- Estimate intrinsic geometric dimensionality of data.
- Recover natural distance metric
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ISOMAP

Core idea: distance metric locally Euclidean
» Small radius r, connect each point to neighbors
*  Weight based on Euclidean distance
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ISOMAP

Solve all-points shortest pairs:
- Transforms local distance to global distance.
- Compute embedding.

7
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ISOMAP
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From Tenenbaum, de Silva, and Langford, Science 290:2319-2323, December 2000.



Application: Novelty Detection

Intrusion detection - when is a user behaving unusually?

First proposed by Prof. Dorothy Denning in 1986.
(1995 ACM Fellow)




