Computer Vision

George Konidaris gdk@cs.brown.edu

Fall 2021

[R&N]

What's an Image?

	131,122,240	131,126,224	<mark>231</mark> ,222,240	
	<mark>91</mark> ,112,226	<mark>91</mark> ,116,211	<mark>246</mark> ,236,243	
• •	<mark>84</mark> , 91,220	141,122,216	<mark>251</mark> ,244,241	
	<mark> 36</mark> , 32,210	112,134,234	235,235,240	
	126,134,220	108,101,224	254 ,241,246	
_				

Computer Vision

Image preprocessing

Recognition

Reconstruction

Image Preprocessing

Collection of methods Typically:

- Low-level
- Repetitive
- Local
- Easy to parallelize
- Serve as input to later processing

What's an Edge?

"Edges are straight lines or curves in the image space across which there is a "significant" change in image brightness."

[R&N]

Finding Edges

That gives us a hint! Compute the derivative of brightness with respect to position.

Brightness:

 Average RGB pixel values: Blm(x, y) = (lm(x, y).r + lm(x,y).g + lm(x, y).b)/3

Derivative:

- Take a vertical slice of the image $H_i = BIm(i, :)$
- Compute brightness difference between $H_i(x)$ and $H_i(x+1)$

[R&N]

Canny Edge Detector

Classic and very accurate edge detector.

Five steps:

- Gaussian filter to smooth image (reduce noise)
- Find intensity gradients (horizontal, vertical, diagonal)
- Non-maximum suppression
- Threshold to get edges
- Edge tracking: keep only "connected" edges.

Canny Edge Detection

[via Michael Jacob Matthew, Youtube]

Useful for understanding movement

Optical Flow

Formally!

Given two images I_1 and I_2

Produce optical flow field F

$$\bullet F(x, y) = (dx, dy)$$

• where pixel $I_1[x,y]$ moves to $I_2[x + dx, y + dy]$

This boils down to finding **correspondences**.

One approach

- Find correspondences that minimize "patch" error
- Regularize for smaller movements

[via Matthieu Garrigues, YouTube]

[via Juan Adarve, YouTube]

Image Segmentation

[R&N]

Computer Vision

Image preprocessing

Recognition

[R&N]

Reconstruction

[ImageNet]

Given:

- Object classes O_1, \ldots, O_n
- An image size I
- A collection of labeled data points $\{I_i, O_i\}_n$

Find:

• $f: I \to O_i$

Minimizing expected error.

Classification

Why is this hard?

Foreshortening

Aspect

Occlusion

Deformation

Two main ways of going about this:

- Use a geometric object model
- Use machine learning

First: use an object model to *match* an object in a scene.

Recognition by ML

Just do ML:

- Get lots of labeled data
- Learn a classifier

Primary challenge:

- Objects of the same class look different
- The same object looks different from different orientations

Recognition by ML

Solution:

- Compute features from the image
- Features should be invariant to scale, translation, etc.
 - This is a form of special knowledge about images.
- Use these as input to classifier instead of image

SIFT features

- Scale-invariant feature transform
- Most widely used
- Many applications in industry

Recognition by Parts

Combine ML and object-models

- Objects are made up of "parts"
- Parts have specific relationships to each other
- Match parts by ML, objects by templates or ML
- Best performing: deformable parts

 $\begin{array}{c|c} h_{11} \\ \hline \\ x_1 \\ \hline \\ x_2 \\ \end{array}$

Convolutional Deep Nets

Key idea:

- The first few layers of processing in a deep net construct features automatically.
- Those features should be *location invariant*.
- Create a layer of neurons with spatially local input.
- Constrain their weights to be the same.

Convolutional Deep Nets Feature maps f.maps Input f.maps Output Subsampling Convolutions Convolutions Subsampling Fully connected

Convolutional Deep Nets

All the usual tricks apply:

- Training vs. test set
- Pretraining
- Can generate synthetic data!
- Must design network architecture
- But no need to think hard about features
- Very powerful hypothesis class
- Lots of data available!

0.23% error rate

Computer Vision

Image preprocessing

Recognition

[R&N]

Reconstruction

Recover 3D information and structure from collection of images.

[Tomasi, R&N]

Real-time Monocular Scene Reconstruction in a Public Environment (Home Improvement Store)

Supplemental video for ACM Transactions on Graphics 2016 paper

"Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction"

> Michael Waechter¹, Mate Beljan¹, Simon Fuhrmann¹, Nils Moehrle¹, Johannes Kopf², and Michael Goesele¹

> > ¹Technische Universität Darmstadt, ²Facebook

This video contains audio.

Tracking

Depth Sensors

Depth Sensors

Kinect Hand Detection

Using libfreenect and ROS

By Garratt Gallagher

MIT CSAIL

3D Perception

Typically given 3D model of **specific** object:

- Identify it from a partial view.
- Pose estimate.
- Complete.

3D Perception in Clutter

3D Perception

Sensing a **novel** chair

true model

observation

Autonomous Cars

