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What'’s an Image!
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Computer Vision
Image preprocessing




Image Preprocessing

Collection of methods
Typlcally
Low-level
- Repetitive
* Local
- Easy to parallelize
- Serve as input to later processing




Edge Detection
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What'’s an Edge!

“Edges are straight lines or curves in the image space across which
there is a “significant” change in image brightness.”
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Figure 24.6  Different kinds of edges: (1) depth discontinuities; (2) surface orientation
discontinuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows).
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Finding Edges

That gives us a hint!
Compute the derivative of brightness with respect to position.

Brightness:
* Average RGB pixel values:
Bim(x,y) = (Im(x, y).r + Im(x,y).g + Im(x, y).b)/3

Derivative:

* Take a vertical slice of the image H; = BIm(i, :)
* Compute brightness difference between Hi(x) and Hi(x+1)



Finding Edges
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Canny Edge Detector

Classic and very accurate edge detector.

Five steps:
» Gaussian filter to smooth image (reduce noise)
- Find intensity gradients (horizontal, vertical, diagonal)
* Non-maximum suppression
 Threshold to get edges
- Edge tracking: keep only “connected” edges.



Canny Edge Detection

[via Michael Jacob Matthew, Youtube]



Optical Flow

Useful for understanding movement
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Optical Flow

Formally!
Given two images I and I
* Produce optical flow field F

“F(xy) = (dx, dy)
* where pixel I/[x,y] moves to I;[x + dx,y + dy]

This boils down to finding correspondences.

One approach
* Find correspondences that minimize “patch” error
* Regularize for smaller movements



Optical Flow

[via Matthieu Garrigues, YouTube]



Optical Flow
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[via Juan Adarve,YouTube]




Image Segmentation
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Computer Vision

Recognition

Reconstruction
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Recognition

flower

[ImageNet]



Recognition

Given:
* Object classes Oy, ..., Oy
* An image size |
* A collection of labeled data points {l;, Oi}n

Find:
° f [ — OZ

Minimizing expected error.

Classification



Recognition

Why is this hard?
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Recognition

Two main ways of going about this:
+ Use a geometric object model

» Use machine learning

First: use an object model to match an object in a scene.




Recognition by ML

Just do ML:
« Get lots of labeled data
* Learn a classifier

Primary challenge:
+ Objects of the same class look different

+ The same object looks different from different
orientations



Recognition by ML

Solution:
» Compute features from the image
* Features should be invariant to scale, translation, etc.
» This is a form of special knowledge about images.
+ Use these as input to classifier instead of image

SIFT features
 Scale-invariant feature transform
- Most widely used
- Many applications in industry




Recognition by Parts

Combine ML and object-models
»+  Objects are made up of “parts”
* Parts have specific relationships to each other
- Match parts by ML, objects by templates or ML
- Best performing: deformable parts




Deep Nets for Object Recognition




Convolutional Deep Nets

Key idea:

* The first few layers of processing in a deep net construct
features automatically.

* Those features should be location invariant.
* Create a layer of neurons with spatially local input.
» Constrain their weights to be the same.
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Convolutional Deep Nets

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

(wiki)



Convolutional Deep Nets

All the usual tricks apply:
* Training vs. test set
* Pretraining
» Can generate synthetic data!
* Must design network architecture
* But no need to think hard about features
* Very powerful hypothesis class
* Lots of data available!

0.23% error rate
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Computer Vision

Image preprocessing
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Reconstruction

Recover 3D information and structure from collection of
Images.
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Reconstruction

[ Tomasi, R&N]



Reconstruction

Real-time Monocular Scene
Reconstruction
In a Public Environment
(Home Improvement Store)




Reconstruction

Supplemental video for ACM Transactions on Graphics 2016 paper

"Virtual Rephotography:

Novel View Prediction Error for 3D Reconstruction”

Michael Waechter', Mate Beljan', Simon Fuhrmann’,

Nils Moehrle', Johannes Kopf*, and Michael Goesele'

"Technische Universitit Darmstadt, *Facebook

This video contains audio.




Reconstruction




Tracking

[Sevilla]



Depth Sensors




Depth Sensors

Kinect Hand
Detection

Um'ng
libfreenect and ROS

By
Garratt Gallagher

MIT CSAIL




3D Perception

Typically given 3D model of specific object:
* |[dentify it from a partial view.
* Pose estimate.
* Complete.

Model Observed Point Cloud Pose

[Glover]



in Clutter

3D Perception

[Glover]



3D Perception

Sensing a novel chair

true model observation reconstruction



Autonomous Cars




