
Search

George Konidaris
gdk@cs.brown.edu

Fall 2021
(pictures: Wikipedia)

Search

Basic to problem solving:
• How to take action to reach a goal?

Search

Choices have consequences!

Search
Formalizing the problem statement …

• Problem can be in various states.
• Start in an initial state.
• Have some actions available.
• Each action changes state.
• Each action has a cost.
• Want to reach some goal, minimizing cost.

Happens in simulation.
Not web search.

Formal Definition
Set of states

Start state

Set of actions and action rules

Goal test

Cost function

So a search problem is specified by a tuple, .

S

s 2 S

A a(s) ! s0

g(s) ! {0, 1}

C(s, a, s0) ! R+

(S, s,A, g, C)

Problem Statement
Find a sequence of actions
and corresponding states

 … such that:

while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

start state
legal moves
end at the goal

minimize sum of costs - rational agent
nX

i=1

C(si�1, ai, si)

Example
Sudoku

States: all legal Sudoku boards.

Start state: a particular, partially filled-in, board.

Actions: inserting a valid number into the board.

Goal test: all cells filled and no collisions.

Cost function: 1 per move.

Example

States: airports, times.

Start state: TF Green at 5pm.

Actions: available flights from each airport after each time.

Goal test: reached Tokyo by midnight tomorrow.

Cost function: time and/or money.

The Search Tree
Classical conceptualization of search.

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

The Search Tree

3

3 5

1
6

9

8 3

1
4

Important Quantities
Branching factor (breadth)

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

breadth

The Search Tree
Depth
• min solution depth m
• depth d

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

depth
(no. edges)

leaves in a tree of breadth b, depth d. O(bd)

total nodes in the same tree
dX

i=0

b
i 2 O(bd)

The Search Tree
Expand the tree one node at a time.
Frontier: set of nodes in tree, but not expanded.

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

Key to a search algorithm:
which node to expand next?

Searching
visited = {}
frontier = {s0}
goal_found = false

while not goal_found:
node = frontier.next()
frontier.del(node)

if(g(node)):
goal_found = true

else:
visited.add(node)
for child in node.children:

if(not (visited.contains(child) or frontier.contains(child)):
frontier.add(child)

expand tree!

goal test

add children

How to Expand?
Uninformed strategy:
• nothing known about likely solutions in the tree.

What to do?
• Expand deepest node (depth-first search)
• Expand closest node (breadth-first search)

Properties
• Completeness
• Optimality
• Time Complexity (total number of nodes visited)
• Space Complexity (size of frontier)

Depth-First Search

s0

s1

Expand deepest node

Depth-First Search

s0

s1

s2

Expand deepest node

Depth-First Search

s0

s1

s2

X

Expand deepest node

Depth-First Search

s0

s1

s2

X s3

Expand deepest node

Depth-First Search

s0

s1

s2

X s3

Expand deepest node

s4

DFS: Time

…

worst case:

solution on this branch

O(bd � b
d�m) = O(bd)

DFS: Space

…

worst case:
search reaches

bottom

b-1 nodes open
at each level

d levels

O((b� 1)d) = O(bd)

Depth-First Search
Properties:
• Completeness: Only for finite trees.
• Optimality: No.
• Time Complexity:
• Space Complexity:

Note that when reasoning about DFS, m is depth of found
solution (not necessarily min solution depth).

The deepest node happens to be the one you most recently visited -
easy to implement recursively OR manage frontier using LIFO
queue.

O(bd)
O(bd)

Breadth-First Search

s0

s1

Expand shallowest node

Breadth-First Search

s0

s1 s2

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3 s4

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3 s4 s5

Expand shallowest node

BFS: Time

…

O(bm)

BFS: Space

…

O(bm+1)

Breadth-First Search
Properties:
• Completeness: Yes.
• Optimality: Yes for constant cost.
• Time Complexity:
• Space Complexity:

Manage frontier using FIFO queue.

O(bm+1)
O(bm)

Bidirectional Search
s0

s1 s2

s3 s4 s5

g0

g1g2

g3g4g5

Bidirectional Search
Why?
 is way less than2⇥O(b

d
2) O(bd)

Extra requirements:
• Must be able to invert action rules.
• Sometimes easy, sometimes hard.
• Not always unique.
• Single solution.

When do you stop?
• Candidate solution when the frontiers intersect
• That solution may not be optimal - first must exhaust
possible shortcuts.

Iterative Deepening Search

DFS: great memory cost - - but suboptimal solution.

BFS: optimal solution but horrible memory cost: .

The core problems in DFS are a) not optimal, and b) not
complete … because it fails to explore other branches.

Otherwise it’s a very nice algorithm!

Iterative Deepening:
• Run DFS to a fixed depth z.
• Start at z=0. If no solution, increment z and rerun.

O(bm+1)

O(bd)

IDS

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

run DFS
to this depth

IDS
How can that be a good idea?
It duplicates work.

Optimal for constant cost! Proof?

Also!
• Low memory requirement (equal to DFS).
• Not many more nodes expanded than BFS.

(About twice as many for binary tree.)

IDS

…

visited m + 1 times

visited m times

IDS
mX

i=0

bi(m� i+ 1) =
b(bm+1 �m� 2) +m+ 1

(b� 1)2

revisits

nodes at level i bm+1 � 1

b� 1BFS worst case:

IDS
Key Insight:
• Many more nodes at depth m+1 than at depth m.

MAGIC.

“In general, iterative deepening search is the preferred uninformed
search method when the state space is large and the depth of the
solution is unknown.” (R&N)

Uninformed Searches So Far
Simple strategy for choosing next node:

• Choose the shallowest one (breadth-first)
• Choose the deepest one (depth-first)

Neither guaranteed to find the least-cost path, in
the case where action costs are not uniform.

What if we chose the one with lowest cost?

Uniform-Cost
Order the nodes in the frontier by cost-so-far

• Cost from the start state to that node.

Open the next node with the smallest cost-so-far
• Optimal solution
• Complete (provided no negative costs)

Uniform-Cost

s0

s1 s2

5 11

Expand cheapest node
Use whole path cost

Uniform-Cost

s0

s1 s2

5 11

s3 s4

4 7

Expand cheapest node
Use whole path cost

Uniform-Cost

s0

s1

Expand cheapest node
Use whole path cost

s2

5 11

s3 s4

4 7

s5 s6

6 5

Uniform-Cost

s0

s1

Expand cheapest node
Use whole path cost

s2

5 11

s3 s4

4 7

s5 s6

6 5
s7 s8

3 9

Informed Search
What if we know something about the search?

How should we include that knowledge?
In what form should it be expressed to be useful?

What Does Uniform Cost Suggest?
The cost-so-far tells us how much it cost to get to a node.

• Go to cheapest nodes first.

What remains?

Total cost = cost-so-far + cost-to-go
Cost-so-far: cost from start to node.
Cost-to-go: cost from node to goal.

Informed Search
Key idea: heuristic function.

• h(s) - estimates cost-to-go
• Cost to go from state to solution.
• Estimates h*(s) - true cost-to-go.
• h(s) = 0 if s is a goal.

• Problem specific (hence informed)

h(s) h(s) h(s) h(s)

Greed
What if we expand the node with lowest h(s)?

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

h(s)? h(s)?

h(s)?

h(s)? h(s)?

h(s)? h(s)?

Informed Search: A*
A* algorithm:

• g(s) - cost so far (start to s).
• Expand s that minimizes g(s) + h(s)
• Manage frontier as priority queue.

• Admissible heuristic: never overestimates cost.

• h(s) = 0 if s is a goal state, so g(s) + h(s) = c(s)

• If h is admissible, A* finds optimal solution.
• If h(s) is exact, runs in O(bd) time.

h(s)  h⇤(s)

both

Admissible Heuristics
Optimality:
Proof by contradiction

Proof
Assume:

But if sa was opened before sb then:
g(sa) + h(sa)  g(sb) + h(sb)

But if h is admissible then:
g(sb) + h(sb)  g(sb) + h⇤(sb) = g(sopt)

g(sa)  g(sb) + h(sb)  g(sopt)

 … but then:

g(sa) > g(sopt)

co
nt

ra
di

ct
io

n

Example Heuristic

More on Heuristics
Ideal heuristics:

• Fast to compute.
• Close to real costs.

Some programs automatically generate heuristics.

