George Konidaris gdk@cs.brown.edu

Robotics

Fall 2021

Shakey the Robot 1966 - 1972

First robot to combine reasoning and low-level action, an attempt at a truly integrated and complete AI system.

Robotics

High-level Reasoning

Low-level Control

Discrete, abstract, symbolic.

PourTea:

 $Pre: HoldingKettle \land KettleFull$ $Effect: \neg KettleFull \land TeaPoured$

Continuous, noisy, locally and partially observable, sensorimotor space.

The first key question: where am I?

Relevant sensor:

Encoders

Where's my gripper?

Key idea: coordinate frame attached to rigid link.

Each link in the series has a transform matrix describing transform from link before it to its own coordinate frame

Registering Sensor Data

Data given in the coordinate frame of the sensor.

Matrices linked together in a tree

Inverse Kinematics

The reverse question.

Given a target pose in world-space, what joint values reach it?

Motion Planning

start pose

goal

Planning outputs a sequence of robot poses.

How to move directly to a pose from the current pose?

- Must send force to motors.
- How much?
- When?
- For how long?

Control theory:

- How to apply torque to motors
- Don't overshoot
- Don't undershoot
- Don't destabilize the robot.

Control

PID Control

- Move towards goal point with speed proportional to:
 - Proportional to distance (reduce error)
 - Integral term (defeat residual error)
 - Differential term (to dampen)

Robots in Motion

Low-Level Perception

Lots of questions here.

Simultaneous localization and mapping (SLAM)

- Robots have limited perception.
- What does the building look like?
- Where is the robot in it?

SLAM

SLAM

1000 Kilometers Of Appearance-Only SLAM

FabMap 2.0

Robotics

Low-Level

Mid-Level

High-Level

)

High-level Reasoning

Low-level Control

Mid-Level Goals

Given the ability to:

- Localize
- Navigate
- Motion plan
- Move to a given pose
- ... what next?

Object manipulation

Grasping

Where to grasp?

One approach:

- Generate large numbers of grasps (e.g., geometric)
- Train a grasp classifier to recognize good grasps

Grasping in Dense Clutter

Northeastern University

College of Computer and Information Science

Exploring Objects

How many degrees of freedom does an object have?

Exploring Objects

Learning Motor Skills

We've seen this in RL, but one more: parameterized skills.

General skills:

- Single skill to solve a *parametrized family* of problems.
- More flexible skills, avoids re-learning

Learning Motor Skills

Robotics

Low-Level

Mid-Level

High-Level

)

Low-level Control

Planning and Reasoning

Given:

- Localize
- Navigate
- Motion plan
- Move to a given pose
- Recognize objects
- Manipulate objects
- Learning skills
- ... what next?

Planning using these as a foundation.

Planning

Multi-Robot Planning

Decentralized, partially-observable MDPs

Robocup

1,000 km of autonomous operation

Robotics

