Hidden Markov Models

George Konidaris gdk@cs.brown.edu

Fall 2021

Time

Bayesian Networks (so far) contain no notion of *time*.

However, in many applications:

- Target tracking
- Patient monitoring
- Speech recognition
- Gesture recognition

... how a signal changes over time is critical.

States

In probability theory, we talked about atomic events:

- All possible outcomes.
- Mutually exclusive.

In time series, we have **state**:

- System is in a **state** at time t.
- Describes system completely.
- Over time, transition from state to state.

Example

The weather today can be:

- Hot
- Cold
- Chilly
- Freezing

The weather has four states.

At each **point in time**, the system is in **one (and only one) state**.

The Markov Assumption

We are probabilistic modelers, so we'd like to model:

$$P(S_t | S_{t-1}, S_{t-2}, ..., S_0)$$

A state has the Markov property when we can write this as:

$$P(S_t|S_{t-1})$$

Special kind of independence assumption:

• Future independent of past given present.

Markov Assumption

Model that has it is a **Markov model**.

Sequence of states thus generated is a *Markov chain*.

Definition of a state:

- Sufficient statistic for history
- $P(S_t|S_{t-1},...,S_0) = P(S_t|S_{t-1})$

Can describe transition probabilities with matrix:

- $P(S_i | S_j)$
- Steady state probabilities.
- Convergence rates.

State Machines

Assumptions:

- Markov assumption.
- Transition probabilities don't change with time.
- Event space doesn't change with time.
- Time moves in discrete increments.

Hidden State

State machines are cool but:

- Often state is not observed directly.
- State is latent, or hidden.

Instead you see an *observation*, which contains information about the hidden state.

Hidden Markov Models

HMMs

Monitoring/Filtering

- $P(S_t | O_0 ... O_t)$
- E.g., estimate patient disease state.

Prediction

- $P(S_t | O_0 ... O_k), k \le t.$
- Given first two phonemes, what word?

Smoothing

- $P(S_t | O_0 ... O_k), k > t$
- What happened back there?

Most Likely Path

- $P(S_0 ... S_t | O_0 ... O_t)$
- How did I get here?

observations: walls each side?

states: position

We start off not knowing where the robot is.

Robot sense: obstacles up and down. Updates distribution.

Robot moves right: updates distribution.

Obstacles up and down, updates distribution.

What Happened

This is an instance of robot tracking - *filtering*.

Could also:

- Predict (where will the robot be in 3 steps?)
- Smooth (where was the robot?)
- Most likely path (what was the robot's path?)

All of these are questions about the HMM's state at various times.

How?

Let's look at $P(S_t)$ - *no observations*. Assume we have CPTs

$S_0 \qquad S_1 \qquad S_2$ $a \qquad S_2$ $a \qquad A \qquad $	Predictic	n	
a b b P(S ₁ = a) = P(S ₀ = a)P(a a) + P(S ₀) (prior) P(S ₁ = b) = P(S ₀ = a)P(b a) + P(S ₀ = b)P(b b) P(S ₁ = b) = P(S ₀ = b)P(b b)	S ₀		S ₂
b b b $P(S_1 = a) = P(S_0 = a)P(a \mid a) + P(S_0) = b)P(a \mid b)$ (prior) $P(S_1 = b) = P(S_0 = a)P(b \mid a) + P(S_0 = b)P(b \mid b)$	a	a	a
P(S ₀) P(S ₁ = a) = P(S ₀ = a)P(a a) + P(S ₀ = b)P(a b) P(S ₁ = b) = P(S ₀ = a)P(b a) + P(S ₀ = b)P(b b)	b	b	b
(prior) $P(S_1 = b) = P(S_0 = a)P(b a) + P(S_0 = b)P(b b)$	$P(S_0)$	$P(S_1 = a) = P(S_0 = a)P(a a) + P(S_0 = b)P(a b)$	
	(101)	$P(S_1 = b) = P(S_0 = a)P(b a) + P(S_0 = b)P(b b)$	

 $P(S_{1})$ $P(S_{1} = b)P(a | b)$ $P(S_{2} = b) = P(S_{1} = a)P(b | a) + P(S_{1} = b)P(b | b)$

P(S₀) (prior)

a

b

Prediction

Filtering

 $\underset{S_t}{\text{Max } P(S_t \mid O_0 \dots O_t).}$

Forward Algorithm

Let
$$F(k, 0) = P(S_0 = s_k)P(O_0 | S_0 = s_k)$$
.

For t = 1, ..., T:

For k in possible states:

$$F(k,t) = P(O_t | S_t = s_k) \sum_{i} P(s_k | s_i) F(i,t-1)$$

Smoothing

 $P(S_t | O_0 \dots O_k), k > t$ - given data of length k, find $P(S_t)$ for earlier t.

Most Likely Path

 $\max_{S_0 \dots S_t} P(S_0 \dots S_t \mid O_0 \dots O_t) \\ S_0 \dots S_t$

Viterbi

Similar logic to highest probability state, but:

- We seek a path, not a state.
- Single highest probability state.
- Therefore look for highest probability of (ancestor probability times observation probability)
- Maintain link matrix to read path backwards

Similar dynamic programming algorithm, replace sum with max.

Viterbi Algorithm

Most likely path $S_0 \dots S_n$:

V_{i,k}: probability of max prob. path at ending in state s_k, including observations up to O_i (t=i).

L_{i,k}: most likely predecessor of state s_k at time *i*.

Common Form

Very common form:

Noisy observations of true state

Viterbi

"The algorithm has found universal application in decoding the convolutional codes used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space communications, and 802.11 wireless LANs." (wikipedia)

(photo credit: MIT)