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Recall: Bayesian Network
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Recall: BN

Sinus

Flu Allergy

Nose

Headache

Flu P
True 0.6
False 0.4

Allergy P
True 0.2
False 0.8

Nose Sinus P
True True 0.8
False True 0.2
True False 0.3
False False 0.7

Headache Sinus P

True True 0.6
False True 0.4
True False 0.5
False False 0.5

Sinus Flu Allergy P
True True True 0.9
False True True 0.1
True True False 0.6
False True False 0.4
True False False 0.2
False False False 0.8
True False True 0.4
False False True 0.6

joint: 32 (31) entries



Inference
Given A compute P(B | A).
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Time
Bayesian Networks (so far) contain no notion of time.

However, in many applications:
• Target tracking
• Patient monitoring
• Speech recognition
• Gesture recognition

 … how a signal changes over time is critical.



States
In probability theory, we talked about atomic events:

• All possible outcomes.
• Mutually exclusive.

In time series, we have state:
• System is in a state at time t.
• Describes system completely.
• Over time, transition from state to state.



Example
The weather today can be:

• Hot
• Cold
• Chilly
• Freezing

The weather has four states.

At each point in time, the system is in one (and only one) 
state.



Example

t=1 t=2 t=3 … t=n

State at time t
State transition

Freezing
Chilly
Hot

Freezing
Chilly
Hot

Freezing
Chilly
Hot

Freezing
Chilly
Hot



The Markov Assumption
We are probabilistic modelers, so we’d like to model:

P (St|St�1, St�2, ..., S0)

P (St|St�1)

A state has the Markov property when we can write this as:

Special kind of independence assumption:
• Future independent of past given present.



Markov Assumption
Model that has it is a Markov model.

Sequence of states thus generated is a Markov chain.

Definition of a state:
• Sufficient statistic for history
•  

Can describe transition probabilities with matrix:
• P(Si | Sj)
• Steady state probabilities.
• Convergence rates.

P (St|St�1, ..., S0) = P (St|St�1)



State Machines

A B

C

0.4

0.6

0.5 0.5

0.8

0.2

P(A | B) = 0.8
P(A | C) = 0.5
P(B | A) = 0.4 
P(B | C) = 0.5
P(C | A) = 0.6
P(C | B) = 0.2

Time implicit

states not
state vars!

A B C
A 0.0 0.8 0.5
B 0.4 0.0 0.5
C 0.6 0.2 0.0



State Machines
Assumptions:

• Markov assumption.
• Transition probabilities don’t change with time.
• Event space doesn’t change with time.
• Time moves in discrete increments.



Hidden State
State machines are cool but:

• Often state is not observed directly.
• State is latent, or hidden.

Instead you see an observation, which contains information 
about the hidden state.

State: 
forehand



Examples
               State                                         Observation

Sensor

Word Phoneme

Chemical State Color, Smell, etc.

Flu? Runny Nose

Cardiac Arrest? Pulse



Hidden Markov Models

St St+1

Ot Ot+1

Must store:
• P(O | S)
• P(St+1 | St)

transition 
model
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HMMs
Monitoring/Filtering

• P(St | O0 … Ot)
• E.g., estimate patient disease state.

Prediction
• P(St | O0 … Ok), k < t.
• Given first two phonemes, what word?

Smoothing
• P(St | O0 … Ok), k > t
• What happened back there?

Most Likely Path
• P(S0 … St | O0 … Ot)
• How did I get here?



Example: Robot Localization

observations:
walls each side?

states:
position



Example: Robot Localization

We start off not knowing where the robot is.



Example: Robot Localization

Robot sense: obstacles up and down.
Updates distribution.



Example: Robot Localization

Robot moves right: updates distribution.



Example: Robot Localization

Obstacles up and down, updates distribution.



What Happened
This is an instance of robot tracking - filtering.

Could also:
• Predict (where will the robot be in 3 steps?)
• Smooth (where was the robot?)
• Most likely path (what was the robot’s path?)

All of these are questions about the HMM’s state 
at various times.



How?

St St+1

Ot Ot+1

Let’s look at P(St) - no observations.
Assume we have CPTs



Prediction

S0 S1

a

b

a

b

S2

a

b

P(S0)
(prior) P(S1 = b) = P(S0 = a)P(b | a) + 

                 P(S0 = b)P(b | b)

P(S1 = a) = P(S0 = a)P(a | a) + 
                 P(S0 = b)P(a | b)



Prediction

S0 S1

a

b

a

b

S2

a

b

P(S0)
(prior)

P(S2 = b) = P(S1 = a)P(b | a) + 
                 P(S1 = b)P(b | b)

P(S2 = a) = P(S1 = a)P(a | a) + 
                 P(S1 = b)P(a | b)P(S1)



Filtering

St St+1

Ot Ot+1

Max P(St | O0 … Ot).
St



Filtering
Where to start?

P(St | O0 … Ot)? Let’s use P(St, O0 … Ot).

= P (Ot|St)
X

i

P (St|St�1 = si)P (St�1 = si, O0, ..., Ot�1)

=
X

i

P (Ot|St)P (St|St�1 = si)P (St�1 = si, O0, ..., Ot�1)

P (St, O0, ..., Ot) =
X

i

P (St, St�1 = si, O0, ..., Ot)



Forward Algorithm
Let F(k, 0) = P(S0 = sk)P(O0 | S0 = sk).

For t = 1, …, T:
For k in possible states:

F(k, T) is P(ST = sk, O0 … OT)
(normalize to get P(ST | O0 … OT))

F (k, t) = P (Ot|St = sk)
X

i

P (sk|si)F (i, t� 1)



Smoothing
P(St | O0 … Ok), k > t  - given data of length k, find P(St) for earlier t.

Bayes Rule:
• P(St | O0 … Ok)          P(Ot … Ok | St) P(St | O0 … Ot)

forward algorithm

/

Compute using backward pass:
P(Oi … Ok | Si) computed using similar recursion.
Forward-backward algorithm.



Most Likely Path

St St+1

Ot Ot+1

max P(S0 … St | O0 … Ot)
S0 … St



Viterbi
Similar logic to highest probability state, but:

• We seek a path, not a state.
• Single highest probability state.
• Therefore look for highest probability of (ancestor 

probability times observation probability)
• Maintain link matrix to read path backwards

Similar dynamic programming algorithm, replace sum with max.



Viterbi Algorithm
Most likely path S0 … Sn:

Vi,k: probability of max prob. path at ending in state sk, including   
       observations up to Oi (t=i).
Li,k: most likely predecessor of state sk at time i. 

For each state sk:
    V0,k = P(O0 | sk)P(sk)
    L0,k = 0
For i = 1…n, 
   For each k: 

    Vi,k = P(Oi | sk) maxx  P(sk | sx) Vi-1,x
   Li,k = argmaxx P(sk | sx)Vi-1,x

observation 
model

transition
model

probability 
of path to x

most likely ancestor



Common Form
Very common form:

•  Noisy observations of true state



Viterbi
“The algorithm has found universal application in decoding the 
convolutional codes used in both CDMA and GSM digital 
cellular, dial-up modems, satellite, deep-space communications, 
and 802.11 wireless LANs.” (wikipedia)

(photo credit: MIT)


