Robot Motion Planning

George Konidaris gdk@cs.brown.edu

Fall 2021

The Planning Problem

Finding a sequence of actions to achieve some goal.

Planning

Fundamental to AI:

• Intelligence is about behavior.

Shakey the Robot

Research project started in 1966.

Integrated:

- Computer vision.
- Planning.
- Control.
- Decision-Making.
- KRR

Classical Planning

(define (problem pb3)
(:domain blocksworld)
(:objects a b c)
(:init (on-table a) (on-table b) (on-table c)
 (clear a) (clear b) (clear c) (arm-empty))
(:goal (and (on a b) (on b c))))

Robot Motion Planning

goal

Configuration Space

Robot has a **configuration space (C-space)**:

- Values for each joint
- Overall pose of reference frame

Configuration Spaces

Each joint is a **dimension** of the configuration space.

Let's say we have a robot with a movable base, and an arm with two revolute joints.

Configuration Spaces

Each joint is a **dimension** of the configuration space.

Let's say we have a robot with an arm with two revolute joints.

Configuration space:

- x, y, theta of base frame
- angle of first joint
- angle of second joint

A configuration is a setting of values to these 5 variables. Configuration space is the space of all such settings.

Configuration Space

Obstacles are no-go regions of configuration space.

(images from Wikipedia)

Configuration Space

Obstacles are no-go regions of configuration space.

(images from Wikipedia)

[from Lozano-Perez 87]

Problem Definition

Given:

- Configuration space
- Start point in C-space
- Goal region in C-space
- Set of obstacles
 - Dense regions of 3D-space
 - (Also regions of C-space)

Find: <u>feasible</u>, <u>obstacle-free</u> (possibly cost-minimizing) path through C-space from start to a point in goal.

Planning

We wish to find a path through configuration space such that:

- Path feasible
- No collisions
- Minimize cost

Paths

Simple definition of a path:

- Sequence of points $p = \{p_1, \dots, p_n\}$
- "Easy" to go between p_i and p_{i+1} .
- Additive cost $C(p_i, p_{i+1})$

Solution - path such that:

- $p_1 = \text{start}$
- p_n inside goal
- No collision between any p_i and p_{i+1} .

•
$$\min \sum_{i=1}^{n-1} C(p_i, p_{i+1})$$

Local Controller

What does "easy to go between p_i and p_{i+1} " mean?

It means you can **control** the robot directly from point p_i to point p_{i+1} , without considering obstacles.

There may also be constraints on motions (e.g., maximum speed or jerk, maximum rate of angular acceleration).

Collision Detection

What does collision-free mean?

Must test: collision between obstacle and swept volume. This can be done in 3-space.

Visibility Graphs

Initial approaches: geometric.

Convex Regions

Convex region: the line connecting any two points inside the region lies itself wholly within the region.

Visibility Graphs

I. Break C-space up into convex regions.

2. Build a graph: each node convex region, edge when they share a face.

3. Do search on the graph.

Visibility Graphs

Optimality

Issue: these paths may not be optimal. Why?

Optimality

Go a bit further: break into *triangles*, each vertex lies on an obstacle vertex.

https://www.youtube.com/watch?v=9YCx5YeSLmo credit: Ulf Biallas

Issues

These are hard to use:

- Convex region numbers grow exponentially with dimension.
- Need analytical model of each obstacle in C-space.
- Need analytical model of C-space!

This is a lot of work.

Consequently, these methods only used for very low-d problems.

Issue: motion planning is P-SPACE complete (Reif, 1979).

Randomization

Alternative solution:

- Rely on randomized algorithms.
- Expensive but probabilistic guarantees.
- Typically very simple to code.

Randomized Algorithms

Two major types:

Graphs (multi-query)

Trees (single-query)

Probabilistic Roadmaps

PRMs

PRMs

[Leven and Hutchinson 2002]

Pros and Cons

Pros

- Initial computation of PRM can be slow
- Reused in many scenarios
- Very simple algorithm

Cons

- Must precompute PRM!
- Collision: 99% of compute time [Bialkowski et al. 2011]
- •Just as fast (or faster) to recompute

RRTs

Don't build a graph in advance - build a tree at query time!

Rapidly Exploring Random Trees

- Build a tree starting from the start state.
- Sample in C-space at random
- Try to connect sample to tree
- Stop when you hit the goal

RRTs

Property: the tree rapidly expands to fill free space.

Why?

RRT:Voronoi Bias

Property: the tree rapidly expands to fill free space.

model by DSMFT group, Texas A&M Univ. original model by Boris Yamrom, GE

(via Steve LaValle)

<u>https://www.youtube.com/watch?v=E_MC7vWb62A</u> credit: Dhiraj Gandhi

More Videos

https://www.youtube.com/watch?v=mEAr2FBUJEI

credit: Nico Nostheide

Robot Motion Planning

Critical for robots in **semi/un-structured** environments.

But:

- Fundamentally hard.
- Very well studied (30 years)
- No real-time solutions.

watch this space

Autonomous Cars

Autonomous Cars

(via Steve LaValle)

Video

https://www.youtube.com/watch?v=AmyweePd1HU Chen, Rickert, and Knoll IROS 2015